工程工艺

页岩油体积压裂后合理焖井时间模拟研究

  • 廖凯 ,
  • 张士诚 ,
  • 谢勃勃
展开
  • 1.中国石油大学(北京)克拉玛依校区石油学院,新疆 克拉玛依 834000
    2.中国石油大学(北京)石油工程学院,北京 102249
    3.中国石油新疆油田分公司工程技术研究院,新疆 克拉玛依 834000
廖凯(1990—),男,博士,讲师,从事油气田开发研究工作。地址:新疆维吾尔自治区克拉玛依市克拉玛依区安定路355号,邮政编码:834000。E-mail: 2020592108@cupk.edu.cn

收稿日期: 2023-11-28

  网络出版日期: 2024-10-11

基金资助

中国石油大学(北京)克拉玛依校区科研启动基金“压裂页岩多尺度裂缝油水置换规律与高效排驱机理研究”(XQZX20220003);新疆维吾尔自治区自然科学基金“陆相页岩油体积压裂后高效排驱机理研究”(2022D01B79)

Simulation of reasonable shut-in time for shale oil after volume fracturing

  • LIAO Kai ,
  • ZHANG Shicheng ,
  • XIE Bobo
Expand
  • 1. Petroleum School, China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang 834000, China
    2. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China
    3. Research Institute of Engineering and Technology, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China

Received date: 2023-11-28

  Online published: 2024-10-11

摘要

针对页岩油藏压裂开发过程中,焖井效果井间差异大、焖井有效性和时效性不明确等问题,建立了考虑裂缝闭合、油水渗吸置换以及压裂液滞留多效应协同的压裂—焖井—生产一体化数值模型,并验证了模型的可靠性,探究了页岩油井压后焖井期间地层油水运移规律以及合理焖井时间。研究结果表明:①焖井期间地层油水运移特征在时间上呈现阶段性变化,依次可分为裂缝闭合、渗吸置换和能量平衡3个主控阶段,同时也在空间上与水力裂缝的复杂程度密切相关;②在毛管渗吸作用下,适当延长焖井时间有利于压裂井初期见产,但压裂液在基质中的滞留量增多也会加剧油相相渗伤害,结合累增油量变化规律,明确了合理焖井时间宜在30~45 d;③考虑真实工况对焖井作用的影响,提出了以“压裂+焖井时间”作为焖井优化的指标,提高时间效益的同时可以减少井间差异。研究提出了体积压裂水平井焖井作用评价方法和模拟流程,其结果对页岩油压裂后合理焖井时间优化具有指导作用。

本文引用格式

廖凯 , 张士诚 , 谢勃勃 . 页岩油体积压裂后合理焖井时间模拟研究[J]. 油气藏评价与开发, 2024 , 14(5) : 749 -755 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.010

Abstract

To address issues such as the significant variance in shut-in effects between wells and the unclear effectiveness and timeliness of shut-ins during fracturing in shale formations, a numerical model integrating fracturing, shut-in, and production processes was developed. This model considers the synergistic effects of fracture closure, oil-water imbibition replacement, and fracturing fluid retention. The model's reliability was verified through simulations, exploring the oil-water migration law in the formation during the shut-in period of shale oil fractured wells and determining the optimal shut-in duration. Research indicates that: ① The oil-water migration characteristics during well shut-in undergo phased changes over time, which can be categorized into three main control stages: fracture closure, imbibition replacement, and energy balance. Additionally, these migration laws are closely related to the complexity of hydraulic fractures in space. ② Under the influence of capillary imbibition, extending the shut-in time appropriately benefits the initial production of fractured wells. However, an increase in fracturing fluid retention within the matrix can also exacerbate oil phase permeability damage. Based on the law of change in incremental oil volume, a reasonable shut-in time is identified to be between 30 to 45 days. ③ Considering real working conditions, “fracturing & well shut-in time” is proposed as an indicator for optimizing well shut-in, which aims to improve time efficiency and reduce differences between wells. This paper proposes an evaluation method and simulation workflow for assessing the well shut-in effects of volume fractured horizontal wells, offering valuable guidance in optimizing the reasonable shut-in time for shale oil fractured wells.

参考文献

[1] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.
  JIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.
[2] 刘乃震, 柳明, 张士诚. 页岩气井压后返排规律[J]. 天然气工业, 2015, 35(3): 50-54.
  LIU Naizhen, LIU Ming, ZHANG Shicheng. Flowback patterns of fractured shale gas wells[J]. Natural Gas Industry, 2015, 35(3): 50-54.
[3] HU Y Q, WANG Q, ZHAO J Z, et al. Numerical simulation of complex fracture geometry caused by hydrodynamics in shale with pre-existing weak planes[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108306.
[4] 王飞, 阮颖琪, 陈巧韵, 等. 考虑压裂液渗吸换油效应的压裂焖井压降模型[J]. 石油勘探与开发, 2021, 48(6): 1250-1257.
  WANG Fei, RUAN Yingqi, CHEN Qiaoyun, et al. A pressure drop model of post-fracturing shut-in considering the effect of fracturing-fluid imbibition and oil replacement[J]. Petroleum Exploration and Development, 2021, 48(6): 1250-1257.
[5] ZHAO J Z, WANG Q, HU Y Q, et al. Numerical investigation of shut-in time on stress evolution and tight oil production[J]. Journal of Petroleum Science and Engineering, 2019, 179: 716-733.
[6] 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828.
  HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828.
[7] 雷群, 翁定为, 熊生春, 等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2021, 48(5): 1035-1042.
  LEI Qun, WENG Dingwei, XIONG Shengchun, et al. Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 1035-1042.
[8] BUI B T, TUTUNCU A N. Contribution of osmotic transport on oil recovery from rock matrix in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 392-408.
[9] 高占武, 屈雪峰, 黄天镜, 等. 鄂尔多斯盆地页岩油储层应力敏感性分析及水平井返排制度优化[J]. 天然气地球科学, 2021, 32(12): 1867-1873.
  GAO Zhanwu, QU Xuefeng, HUANG Tianjing, et al. Stress sensitivity analysis and optimization of horizontal well flowback system for shale oil reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1867-1873.
[10] 孙锡泽, 俞天喜, 艾尼瓦尔·沙依木, 等. 低渗油藏径向多分支水平井产能影响因素分析[J]. 新疆石油天然气, 2023, 19(3): 49-56.
  SUN Xize, YU Tianxi, SHAYIMU Ainiwa'er, et al. Analysis of factors affecting the productivity of radial multilateral horizontal wells in low permeability reservoirs[J]. Xinjiang Oil & Gas, 2023, 19(3): 49-56.
[11] 李传亮, 毛万义, 吴庭新, 等. 渗吸驱油的机理研究[J]. 新疆石油地质, 2019, 40(6): 687-694.
  LI Chuanliang, MAO Wanyi, WU Tingxin, et al. A study on mechanism of oil displacement by imbibition[J]. Xinjiang Petroleum Geology, 2019, 40(6): 687-694.
[12] 王敬, 刘慧卿, 夏静, 等. 裂缝性油藏渗吸采油机理数值模拟[J]. 石油勘探与开发, 2017, 44(5): 761-770.
  WANG Jing, LIU Huiqing, XIA Jing, et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017, 44(5): 761-770.
[13] 王飞, 潘子晴. 化学势差驱动下的页岩储集层压裂液返排数值模拟[J]. 石油勘探与开发, 2016, 43(6): 971-977.
  WANG Fei, PAN Ziqing. Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs[J]. Petroleum Exploration and Development, 2016, 43(6): 971-977.
[14] WANG Q, HU Y Q, ZHAO J Z, et al. Numerical simulation of fracture initiation, propagation and fracture complexity in the presence of multiple perforations[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103486.
[15] 张涛, 李相方, 杨立峰, 等. 关井时机对页岩气井返排率和产能的影响[J]. 天然气工业, 2017, 37(8): 48-60.
  ZHANG Tao, LI Xiangfang, YANG Lifeng, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells[J]. Natural Gas Industry, 2017, 37(8): 48-60.
[16] LIAO K, ZHANG S C, MA X F, et al. Numerical investigation of fracture compressibility and uncertainty on water-loss and production performance in tight oil reservoirs[J]. Energies, 2019, 12(7): 1189.
[17] 李嘉成, 田刚, 王俊超, 等. 岩心-测井-地震信息二步匹配预测页岩储层层理缝[J]. 新疆石油天然气, 2024, 20(1): 21-30.
  LI Jiacheng, TIAN Gang, WANG Junchao, et al. Prediction of bedding fractures in shale reservoirs based on two-step matching core-logging-seismic information[J]. Xinjiang Oil & Gas, 2024, 20(1): 21-30.
[18] ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33-48.
[19] LI Y S, LI X F, TENG S N, et al. Improved models to predict gas-water relative permeability in fractures and porous media[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 190-201.
[20] GDANSKI R, FULTON D, SHEN C. Fracture-face-skin evolution during cleanup[J]. SPE Production & Operations, 2009, 24(1): 22-34.
[21] LIAO K, ZHU J, SUN X, et al. Numerical investigation on injected-fluid recovery and production performance following hydraulic fracturing in shale oil wells[J]. Processes, 2022, 10(9): 1749.
[22] FU Y K, DEHGHANPOUR H, EZULIKE D O, et al. Estimating effective fracture pore volume from flowback data and evaluating its relationship to design parameters of multistage-fracture completion[J]. SPE Production & Operations, 2017, 32(4): 423-439.
文章导航

/