综合研究

油田三维地质多级建模策略与方法——以渤海湾盆地整装孤岛油田为例

  • 束青林 ,
  • 王亚楠 ,
  • 韩智颖 ,
  • 姚秀田 ,
  • 夏建 ,
  • 陈雨茂 ,
  • 李伟忠
展开
  • 1.中国石化胜利油田分公司,山东 东营 257001
    2.中国石化胜利油田分公司物探研究院,山东 东营 257000
    3.中国石化胜利油田分公司孤岛采油厂,山东 东营 257231
    4.中国石化胜利油田分公司勘探开发研究院,山东 东营 257015
束青林(1966—),男,正高级工程师,博士,主要从事油气开发工程技术研究及管理方面的工作。地址:山东省东营市东营区济南路125号,邮政编码:257001。E-mail: shuqinglin.slyt@sinopec.com

收稿日期: 2023-08-22

  网络出版日期: 2024-10-11

基金资助

中国石化科研攻关项目“地球物理资料约束油藏建模技术研究”(P24046);中国石化“十条龙”项目“六油藏地球物理软件集成及示范应用”(P24038);中国石化重点科技项目“胜坨油田特高含水期深度开发关键技术”(P20070-4)

Strategies and methods of 3D geological multi-level modeling for oilfields: A case study of an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin

  • SHU Qinglin ,
  • WANG Yanan ,
  • HAN Zhiying ,
  • YAO Xiutian ,
  • XIA Jian ,
  • CHEN Yumao ,
  • LI Weizhong
Expand
  • 1. Sinopec Shengli Oilfield Company, Dongying, Shandong 257001, China
    2. Institute of Geophysical Prospecting, Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    3. Gudao Oil Production Plant, Sinopec Shengli Oilfield Company, Dongying, Shandong 257231, China
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying, Shandong 257015, China

Received date: 2023-08-22

  Online published: 2024-10-11

摘要

三维地质建模应用于油田勘探开发的各个阶段,解决不同的问题时,对建模的规模、精度及要求也不同。分区块地质建模在井位部署、开发调整分析上可以起到一定的指导作用,但是各独立区块模型没有统一的标准,不能实现由小模型到大模型的拼接,制约了油田的整体勘探开发及规划工作。为了更好发挥地质建模在油田勘探开发全生命周期的精准作用,研究以渤海湾盆地整装孤岛油田为例,提出了油田—区块—储层单砂体构型的多级建模策略。使用具有自主知识产权的Direct、M3地质建模软件,应用地质约束的地质统计学及嵌入式储层构型建模方法,实现了从大到小、整体到局部、笼统到精细。分层级刻画了油田的构造沉积演化特征、储层内部构型及油藏空间展布,建成了中国首例油田级亿万网格节点的三维地质大模型及分级模型,为深化地质认识、油藏开发潜力评价、整体开发调整提高采收率提供了有利的手段。多级三维地质建模技术既为技术人员提供了多学科一体化的交流平台,又为油田勘探开发提供了方向,是油田数字化管理的有力抓手,更是数字化、智能化油田发展的必然趋势。

本文引用格式

束青林 , 王亚楠 , 韩智颖 , 姚秀田 , 夏建 , 陈雨茂 , 李伟忠 . 油田三维地质多级建模策略与方法——以渤海湾盆地整装孤岛油田为例[J]. 油气藏评价与开发, 2024 , 14(5) : 779 -787 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.014

Abstract

3D geological modeling is essential at every stage of oilfield exploration and development. The scale, precision, and requirements of modeling vary depending on the issues at hand. While zonal block geological modeling guides well location deployment and the analysis of well group development and adjustments, the absence of a unified standard for each independent block model hinders the integration of smaller models into larger ones. This limitation affects the overall exploration, development, and planning of the oilfield. To maximize the precision and guiding role of geological modeling throughout the entire lifecycle of an oilfield, this paper uses an integrated oilfield, Gudao Oilfield, in Bohaiwan Basin as a case study. It introduces a multi-stage modeling strategy that progresses from a monolithic oilfield to zonal blocks and finally to reservoir configurations(single sand bodies). These approach using geological modeling software, Direct and M3, with independent intellectual property rights and applying geostatistics and embedded reservoir configuration modeling with geological constraints to realize the transformation from macro to micro, whole to local, and general to detailed, providing an in-depth description of the oilfield’s structural and depositional characteristics, reservoir configurations, and spatial distribution of oil reservoirs. The 3D geological large-scale model and hierarchical model of the first multi-billion grid nodes of the oilfield in China are built. Such detailed modeling aids in deepening geological understanding, evaluating the potential of developed oil reservoirs, and locating remaining reserves, thereby ensuring the oilfield’s sustained and stable production. 3D geological multi-stage modeling technology not only facilitates multidisciplinary communication among petroleum professionals but also serves as a robust foundation for digital oilfield management. It represents an inevitable trend towards the development of digital and intelligent oilfields and offers significant guidance for oilfield exploration and development.

参考文献

[1] HOULDING S W. 3D geoscience modeling computer techniques for geological characterization[M]. Berlin: Springer-Verlag, 1994.
[2] 裘亦楠. 储层地质模型[J]. 石油学报, 1991, 12(4): 55-62.
  QIU Yinan. Geological models of petroleum reservoir[J]. Acta Petrolei Sinica, 1991, 12(4): 55-62.
[3] 张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275.
  ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275.
[4] 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4): 759-767.
  LI Qingyuan, ZHANG Luoyi, CAO Daiyong, et al. Usage, status, problems, trends and suggestions of 3D geological modeling[J]. Geology and Exploration, 2016, 52(4): 759-767.
[5] 吴胜和. 储层表征与建模[M]. 北京: 石油工业出版社, 2010.
  WU Shenghe. Reservoir characterization & modeling[M]. Beijing: Petroleum Industry Press, 2010.
[6] 于金彪. 油藏地质建模技巧及质量控制方法[J]. 新疆石油地质, 2017, 38(2): 188-192.
  YU Jinbiao. Reservoir geological modeling technique and quality control method[J]. Xinjiang Petroleum Geology, 2017, 38(2): 188-192.
[7] 姚光庆, 马正, 赵彦超, 等. 储层描述尺度与储层地质模型分级[J]. 石油实验地质, 1994, 16(4): 403-408.
  YAO Guangqing, MA Zheng, ZHAO Yanchao, et al. Measures on reservoir description corresponding with the graduation of geological reservoir models[J]. Petroleum Geology & Experiment, 1994, 16(4): 403-408.
[8] 胜利油田石油地质志编写组. 中国石油地质志(卷六): 胜利油田[M]. 北京: 石油工业出版社, 1993.
  The Oil Geology of Editorial Committee of Shengli Oilfield. Petroleum geology of China:Vol.6[M]. Beijing: Petroleum Industry Press, 1993.
[9] 刘彦娜. 精细化油藏管理, 改善孤岛油田中一区馆3-6单元后续水驱开发效果[J]. 经济管理(全文版), 2016, 10(3): 285-285.
  LIU Yanna. Refined reservoir management to improve the follow-up water drive development effect of Guan3-6 unit, Zhong1 District, Gudao Oilfield[J]. Economic Management(Full Text Edition), 2016, 10(3): 285-285.
[10] 张昌民, 张尚锋, 李少华, 等. 中国河流沉积学研究20年[J]. 沉积学报, 2004, 22(2): 183-192.
  ZHANG Changmin, ZHANG Shangfeng, LI Shaohua, et al. Advances in Chinese fluvial sedimentology from1983 to 2003[J]. Acta Sedimentologica Sinica, 2004, 22(2): 183-192.
[11] 徐东齐, 孙致学, 任宇飞, 等. 基于地质知识库的辫状河致密储层地质建模[J]. 断块油气田, 2018, 25(1): 57-61.
  XU Dongqi, SUN Zhixue, REN Yufei, et al. Geological modeling of braided river tight reservoir based on geological knowledge database[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 57-61.
[12] 王立德, 王小卫, 周辉, 等. 一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J]. 岩性油气藏, 2023, 35(4): 61-69.
  WANG Lide, WANG Xiaowei, ZHOU Hui, et al. A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method[J]. Lithologic Reservoirs, 2023, 35(4): 61-69.
[13] 冉祥金. 区域三维地质建模方法与建模系统研究[D]. 长春: 吉林大学, 2020.
  RAN Xiangjin. The research of method and system of regional three-dimensional geological modeling[D]. Changchun: Jilin University, 2020.
[14] MIALL A D. Architectural-element analysis a new method of facies analysis applied to fluvial deposits[J]. Earth Science Review, 1985, 22(4): 261-308.
[15] 尹艳树, 丁文刚, 安小平, 等. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
  YIN Yanshu, DING Wengang, AN Xiaoping, et al. Configuration characterization of Triassic Chang 611 reservoir in Sai 160 well area of Ansai oilfield, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(4): 37-49.
[16] 何文祥, 吴胜和, 唐义疆, 等. 地下点坝砂体内部构型分析: 以孤岛油田为例[J]. 矿物岩石, 2005, 25(2): 81-86.
  HE Wenxiang, WU Shenghe, TANG Yijiang, et al. The architecture analysis of the underground point bar: Taking Gudao Oilfield as an example[J]. Journal of Mineralogy and Petrology, 2005, 25(2): 81-86.
[17] 徐振永, 吴胜和, 杨渔, 等. 地下曲流河沉积点坝内部储层构型研究: 以大港油田一区一断块Dj5井区为例[J]. 石油地球物理勘探, 2007, 42(增刊1): 86-89.
  XU Zhenyong, WU Shenghe, YANG Yu, et al. Study on reservoir's structural model inside sedimentary point bar of underground meandering river: Taking well Dj-5 in block-1 of zone-1 in Dagang Oilfield as a case[J]. Oil Geophysical Prospecting, 2007, 42(Suppl. 1): 86-89.
[18] 曾旭, 卞从胜, 沈瑞, 等. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
  ZENG Xu, BIAN Congsheng, SHEN Rui, et al. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[19] 徐中波, 汪利兵, 申春生, 等. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
  XU Zhongbo, WANG Libing, SHEN Chunsheng, et al. Architecture characterization of meandering river reservoirs of lower Minghuazhen Formation of Neogene in Penglai 19-3 oilfield, Bohai Sea[J]. Lithologic Reservoirs, 2023, 35(5): 100-107.
[20] 岳大力, 吴胜和, 刘建民. 曲流河点坝地下储层构型精细解剖方法[J]. 石油学报, 2007, 28(4): 99-103.
  YUE Dali, WU Shenghe, LIU Jianmin. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river[J]. Acta Petrolei Sinica, 2007, 28(4): 99-103.
[21] 陈仕臻, 林承焰, 任丽华. 构型模式控制下的曲流河多尺度地质建模研究: 以胜利油田史南区块为例[J]. 中国矿业大学学报, 2020, 49(3): 552-562.
  CHEN Shizhen, LIN Chengyan, REN Lihua. Multi-scale geological modeling of meandering river under the control of architectural pattern: Taking Shinan block of Shengli Oilfield as an example[J]. Journal of China University of Mining & Technology, 2020, 49(3): 552-562.
[22] 王珏, 高兴军, 周新茂. 曲流河点坝储层构型表征与剩余油分布模式[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 13-24.
  WANG Jue, GAO Xingjun, ZHOU Xinmao. Reservoir achitecture characterization and remaining oil distribution of meandering river[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(3): 13-24.
[23] 于欢. 辫状河储层内部构型精细描述及剩余油分布[J]. 大庆石油地质与开发, 2015, 34(4): 73-77.
  YU Huan. Fine characterization of the internal configuration for the braided river reservoirs and remained oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(4): 73-77.
[24] 范峥, 吴胜和, 岳大力, 等. 曲流河点坝内部构型的嵌入式建模方法研究[J]. 中国石油大学学报(自然科学版), 2012, 36(3): 1-6.
  FAN Zheng, WU Shenghe, YUE Dali, et al. Embedding modeling method for internal architecture of point bar sand body in meandering river reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(3): 1-6.
[25] 程武洲. 三维多点地质建模方法改进及应用[D]. 荆州: 长江大学, 2021.
  CHEN Wuzhou. Improvement and application of 3D multi-point geological modeling method[D]. Jingzhou: Yangtze University, 2021.
文章导航

/