油气藏评价与开发 >
2024 , Vol. 14 >Issue 5: 805 - 813
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.05.017
苏北盆地刘庄储气库密封性评价研究
收稿日期: 2023-11-03
网络出版日期: 2024-10-11
基金资助
国家石油天然气管网集团有限公司科学研究与技术开发项目“油气管道装备国产化深化研究与应用”(CLZB202110);国家石油天然气管网集团有限公司科学研究与技术开发项目“文23储气库结盐风险评估及治理对策研究”(WZXGL202103)
Sealing evaluation of Liuzhuang UGS in Subei Basin
Received date: 2023-11-03
Online published: 2024-10-11
对储气库密闭性进行评价是其建设与运行的重要任务,苏北盆地刘庄储气库属于断层控制的断鼻构造边水储气库,通过岩石力学实验与理论分析相结合的方法,从盖层和断层2个方面综合评价刘庄储气库的密封性;从宏观、微观和力学方面评价盖层密封强度;从侧向和垂向评价断层密封能力。研究表明:阜宁组二段一砂组与阜宁组三段二砂组泥岩为研究区内的巨厚盖层,该盖层全区分布且区域分布稳定,岩性组合优越,其黏土矿物含量在30%以上,储气库盖层杨氏模量和脆性指数整体相对较低,杨氏模量普遍小于20 GPa,脆性指数普遍小于45%,黏土矿物组成以伊蒙混层矿物为主,遇水易膨胀,盖层具有良好的油气封堵性。刘①断层断距和倾角均较大,结合研究区内断层面正压力法和上覆地层埋深的经验得出控藏断层垂向密封;砂泥对接定性方法和泥岩涂抹因子定量方法均证明刘庄控藏断层具有较强的侧向封堵性。
朱子恒 , 任众鑫 , 王照周 , 郭尚涛 , 王朝国 , 柳誉剑 , 杨涛 , 魏兵 . 苏北盆地刘庄储气库密封性评价研究[J]. 油气藏评价与开发, 2024 , 14(5) : 805 -813 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.05.017
The evaluation of underground gas storage(UGS) tightness is a critical aspect of the construction and operation phases. The Liuzhuang UGS in the Subei Basin, characterized by a fault-controlled fault nose structure and edge water UGS, underwent a comprehensive evaluation of its sealing performance. This assessment focused on both cap rocks and faults, incorporating rock mechanics experiments and theoretical analysis. The evaluation analyzed the sealing strength of the cap rock from macroscopic, microscopic, and mechanical perspectives. It was determined that the thick cap rocks are primarily mudstone from the upper part of the second member and the lower part of the third member of the Funing Formation. These cap rocks are widespread throughout the area with stable regional distribution. Their lithology is favorable, containing over 30% clay minerals. The cap rock's mechanical properties, including a Young's modulus generally below 20 GPa and a brittleness index typically under 45%, contribute to its effective sealing capabilities. The predominant clay minerals in the cap rock are illite-montmorillonite mixed layers, which easily expand in water, enhancing the oil and gas seal effectiveness. Furthermore, the fault analysis focused on both lateral and vertical sealing capabilities. The Liu① fault, characterized by significant fault throw and steep dip angles, demonstrated robust vertical sealing obtained through the combination of the positive pressure method on the fault plane and regional experiences with overlying strata depths. The lateral seal of the fault was substantiated using both qualitative methods, like sand-mud docking, and quantitative assessments, including the shale smear factor. These methodologies confirmed that the Liuzhuang reservoir-controlling fault possesses strong lateral sealing properties.
[1] | 丁国生, 李春, 王皆明, 等. 中国地下储气库现状及技术发展方向[J]. 天然气工业, 2015, 35(11): 107-112. |
DING Guosheng, LI Chun, WANG Jieming, et al. The status quo and technical development direction of underground gas storage in China[J]. Natural Gas Industry, 2015, 35(11): 107-112. | |
[2] | 马新华, 郑得文, 魏国齐, 等. 中国天然气地下储气库重大科学理论技术发展方向[J]. 天然气工业, 2022, 42(5): 93-99. |
MA Xinhua, ZHENG Dewen, WEI Guoqi, et al. Development directions of major scientific theories and technologies for underground gas storage[J]. Natural Gas Industry, 2022, 42(5): 93-99. | |
[3] | 张刚雄, 李彬, 郑得文, 等. 中国地下储气库业务面临的挑战及对策建议[J]. 天然气工业, 2017, 37(1): 153-159. |
ZHANG Gangxiong, LI Bin, ZHENG Dewen, et al. Challenges to and proposals for underground gas storage(UGS) business in China[J]. Natural Gas Industry, 2017, 37(1): 153-159. | |
[4] | 刘恒阳. “双碳”背景下天然气地下储气库机遇与挑战[J]. 石油与天然气化工, 2022, 51(6): 70-76. |
LIU Hengyang. Opportunities and challenges of underground natural gas storage based on carbon peak and carbon neutrality goals[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 70-76. | |
[5] | 郑雅丽, 邱小松, 赖欣, 等. 气藏型地下储气库地质体注采运行风险分级与管控[J]. 天然气工业, 2022, 42(3): 114-119. |
ZHENG Yali, QIU Xiaosong, LAI Xin, et al. Risk classification and control of gas-storage geological body of gas reservoir type during injection, production and operation[J]. Natural Gas Industry, 2022, 42(3): 114-119. | |
[6] | 周军, 肖瑶, 孙建华, 等. 储气库地面工艺系统能效评价方法研究[J]. 石油与天然气化工, 2022, 51(2): 110-115. |
ZHOU Jun, XIAO Yao, SUN Jianhua, et al. Energy efficiency evaluation of underground gas storage ground process system[J]. Chemical Engineering of Oil & Gas, 2022, 51(2): 110-115. | |
[7] | 张建国, 夏勇, 赵晨阳, 等. 鄂尔多斯盆地低渗透岩性气藏型地下储气库地质评价关键技术[J]. 天然气工业, 2023, 43(10): 55-63. |
ZHANG Jianguo, XIA Yong, ZHAO Chenyang, et al. Key technologies for geological evaluation of UGSs rebuilt from low-permeability lithological gas reservoirs in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(10): 55-63. | |
[8] | 雷鸣, 王丹丹, 邱小松, 等. 基于ANSYS的断层安全性评价方法及应用: 以苏北盆地东台坳陷白驹含水层储气库为例[J]. 石油实验地质, 2022, 44(5): 904-913. |
LEI Ming, WANG Dandan, QIU Xiaosong, et al. Evaluation method for fault safety and its application based on ANSYS: A case study of Baiju aquifer gas storage in Dongtai Depression, Subei Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 904-913. | |
[9] | 宗师, 刘世奇, 徐辉, 等. 苏北盆地层状盐穴储气库CO2封存数值模拟研究[J]. 煤田地质与勘探, 2023, 51(3): 27-36. |
ZONG Shi, LIU Shiqi, XU Hui, et al. Numerical simulation of CO2 storage in bedded salt rock storage cavern in Subei Basin[J]. Coal Geology & Exploration, 2023, 51(3): 27-36. | |
[10] | 张冬玲, 鲍志东, 刘平兰. 苏北盆地浅层天然气藏成藏条件探讨[J]. 石油勘探与开发, 2005, 32(2): 46-49. |
ZHANG Dongling, BAO Zhidong, LIU Pinglan. Trapping conditions of shallow gas accumulation in Subei Basin[J]. Petroleum Exploration and Development, 2005, 32(2): 46-49. | |
[11] | 罗义, 刘义梅, 段宏亮. 苏北盆地天然气类型及成因分析[J]. 复杂油气藏, 2020, 13(2): 22-27. |
LUO Yi, LIU Yimei, DUAN Hongliang. Analysis on types and genesis of natural gas in Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2020, 13(2): 22-27. | |
[12] | 王梓蔚. LZ储气库的扩容方案设计[D]. 成都: 西南石油大学, 2016. |
WANG Ziwei. Design of expansion plan for LZ gas storage depot[D]. Chengdu: Southwest Petroleum University, 2016. | |
[13] | 付晓飞, 吕丁友, 黄江波, 等. 断裂—盖层耦合封闭机理及断层圈闭油气聚集模式[J]. 天然气工业, 2022, 42(3): 21-28. |
FU Xiaofei, LYU Dingyou, HUANG Jiangbo, et al. Fault-caprock coupling sealing mechanism and fault trap hydrocarbon accumulation model[J]. Natural Gas Industry, 2022, 42(3): 21-28. | |
[14] | 邓祖佑, 王少昌, 姜正龙, 等. 天然气封盖层的突破压力[J]. 石油与天然气地质, 2000, 21(2): 136-138. |
DENG Zuyou, WANG Shaochang, JIANG Zhenglong, et al. Breaking pressure of natural gas cap rocks[J]. Oil & Gas Geology, 2000, 21(2):136-138. | |
[15] | 林建品, 贾善坡, 刘团辉, 等. 枯竭气藏改建储气库盖层封闭能力综合评价研究: 以兴9枯竭气藏为例[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4099-4107. |
LIN Jianpin, JIA Shanpo, LIU Tuanhui, et al. Comprehensive evaluation of the sealing ability of mudstone cap rock for Xing 9 depleted gas reservoir in reconstructing underground gas storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl. 2): 4099-4107. | |
[16] | 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5): 356-363. |
TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5): 356-363. | |
[17] | 聂海宽, 张金川, 张培先, 等. 福特沃斯盆地Barnett页岩气藏特征及启示[J]. 地质科技情报, 2009, 28(2): 87-93. |
NIE Haikuan, ZHANG Jinchuan, ZHANG Peixian, et al. Shale gas reservoir characteristics of Barnett Shale Gas Reservoir in Fort Worth Basin[J]. Bulletin of Geological Science and Technology, 2009, 28(2): 87-93. | |
[18] | BOWKER K A. Development of the Barnett shale play, Fort Worth Basin[J]. West Texas Geological Society Bulletin, 2003, 42(6): 4-11. |
[19] | 张阳. 断层泥比率法在储气库断层侧向封闭性定量评价中的应用: 以中原文23储气库为例[J]. 录井工程, 2019, 30(3): 39-44. |
ZHANG Yang. Application of shale gouge ratio method in quantitative evaluation of lateral fault sealing of gas storage:A case study of Zhongyuan Wen23 gas storage[J]. Mud Logging Engineering, 2019, 30(3): 39-44. | |
[20] | 董大忠, 梁峰, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业, 2022, 42(8): 96-111. |
DONG Dazhong, LIANG Feng, GUAN Quanzhong, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. | |
[21] | 吕延防, 付广, 付晓飞, 等. 断层对油气的输导与封堵作用[M]. 北京: 石油工业出版社, 2013. |
LYU Yanfang, FU Guang, FU Xiaofei, et al. The migration and sealing effect of faults on oil and gas[M]. Beijing: Petroleum Industry Press, 2013. | |
[22] | 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316. |
LYU Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316. | |
[23] | 李勇, 罗力元, 王剑, 等. 断层封闭性演化地球化学评价方法及其控藏作用: 以准噶尔盆地西北缘红车断裂带为例[J]. 天然气工业, 2023, 43(8): 12-25. |
LI Yong, LUO Liyuan, WANG Jian, et al. A geochemical evaluation method of fault sealing evolution and its controlling effect on hydrocarbon accumulation: A case study of the Hongche fault zone in the north-west margin of the Junggar Basin[J]. Natural Gas Industry, 2023, 43(8): 12-25. | |
[24] | 王珂, 戴俊生. 地应力与断层封闭性之间的定量关系[J]. 石油学报, 2012, 33(1): 74-81. |
WANG Ke, DAI Junsheng. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 2012, 33(1): 74-81. |
/
〈 | 〉 |