地热能开发与利用

地热资源开发潜力及应用前景评价——以开封祥符区为例

  • 孙冠宇 ,
  • 柏宗宪 ,
  • 李洪达 ,
  • 王宇飞 ,
  • 柏宗翰 ,
  • 高慧杰 ,
  • 祝志敏 ,
  • 黄政 ,
  • 马英亮 ,
  • 王亮亮
展开
  • 1.中国石油冀东油田公司新能源事业部,河北 唐山 063000
    2.中国石油冀东油田公司南堡作业区,河北 唐山 063000
    3.中国石油大学(华东)石油工程学院,山东 青岛 266580
孙冠宇(1983—),男,本科,高级工程师,主要从事地热资源、地热能开发等研究。地址:河北省唐山市路北区新华西道101号,邮政编码:063000。E-mail:sunguanyu@petrochina.com.cn
柏宗宪(1995—),男,硕士,工程师,主要从事油气及地热开发等研究。地址:河北省唐山市路北区新华西道101号,邮政编码:063000。E-mail:baizongxian77@163.com

收稿日期: 2024-04-26

  网络出版日期: 2024-12-10

基金资助

中国石油科学研究与技术开发项目课题“地热资源开发利用关键技术研究”(2021DJ5502(CF))

Evaluation of development potential and application prospect of geothermal resources: A case study of Xiangfu District in Kaifeng

  • SUN Guanyu ,
  • BAI Zongxian ,
  • LI Hongda ,
  • WANG Yufei ,
  • BAI Zonghan ,
  • GAO Huijie ,
  • ZHU Zhimin ,
  • HUANG Zheng ,
  • MA Yingliang ,
  • WANG Liangliang
Expand
  • 1. New Energy Division, PetroChina Jidong Oilfield Company, Tangshan, Hebei 063000, China
    2. Operation Area of Nanpu Oilfield, PetroChina Jidong Oilfield Company, Tangshan, Hebei 063000, China
    3. Department of Petroleum Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China

Received date: 2024-04-26

  Online published: 2024-12-10

摘要

随着全球对清洁能源需求的增加,地热资源作为可再生能源受到广泛关注。该研究以开封市祥符区为例,评价了该地区地热资源的开发潜力及应用前景。研究表明:祥符区热储层的垂向温度场可分为变温带、恒温带和增温带,深度影响显著。地温梯度在500 m以深随深度增加而增大,500 m以浅逐渐降低。地热流体的化学成分分析显示,不同深度热储层间水化学类型差异明显,各热储层之间无显著水力联系。根据最大允许降深法和可采水量换算法,估算无回灌条件下地热流体可开采总量为9 390×104 m3;在完全回灌条件下,地热流体可开采总量为360.7×108 m3,开发潜力巨大。研究成果为祥符区地热资源的高效开发利用提供了科学依据和指导。

本文引用格式

孙冠宇 , 柏宗宪 , 李洪达 , 王宇飞 , 柏宗翰 , 高慧杰 , 祝志敏 , 黄政 , 马英亮 , 王亮亮 . 地热资源开发潜力及应用前景评价——以开封祥符区为例[J]. 油气藏评价与开发, 2024 , 14(6) : 842 -848 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.003

Abstract

With the growing global demand for clean energy, geothermal resources as a renewable energy source have attracted widespread attention. This study evaluated the geothermal resource development potential and application prospects in the Xiangfu District of Kaifeng City. The results showed that the vertical temperature field of the thermal reservoir in the Xiangfu District could be divided into varying temperature zones, constant temperature zones, and increasing temperature zones, with depth significantly influencing the temperature distribution. The geothermal gradient increased with depth above 500 m and gradually decreased below 500 m. Chemical analysis of geothermal fluids showed significant differences in the water chemistry types between thermal reservoirs at different depths, with no significant hydraulic connection between the reservoirs. Based on the maximum allowable depth reduction method and the extracted water volume method, the total exploitable geothermal fluid without reinjection was estimated to be 9,390×104 m3. Under complete reinjection conditions, the total exploitable geothermal fluid was estimated to be 360.7×108 m3, indicating substantial development potential. These research findings provide a scientific basis and guidance for the efficient development and utilization of geothermal resources in the Xiangfu District.

参考文献

[1] 李娜娜, 陶诚, 孔彦龙, 等. 全球地热发电现状与研究进展[J]. 热力发电, 2024, 53(6): 1-11.
  LI Nana, TAO Cheng, KONG Yanlong, et al. Status and research progress of geothermal power generation development and utilization[J]. Thermal Power Generation, 2024, 53(6): 1-11.
[2] 张富珍, 胥蕊娜, 姜培学. 二氧化碳捕集与地热发电全链能流分析[J]. 天然气工业, 2022, 42(4): 130-138.
  ZHANG Fuzhen, XU Ruina, JIANG Peixue. Energy flow analysis on the full-chain system of carbon dioxide capture and geothermal power generation[J]. Natural Gas Industry, 2022, 42(4): 130-138.
[3] 胡俊文, 闫家泓, 王社教. 我国地热能的开发利用现状、问题与建议[J]. 环境保护, 2018, 46(8): 45-48.
  HU Junwen, YAN Jiahong, WANG Shejiao. The development and utilization of geothermal energy in China[J]. Environmental Protection, 2018, 46(8): 45-48.
[4] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450.
  WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-450.
[5] KAMILA Z, KAYA E, ZARROUK S J. Reinjection in geothermal fields: An updated worldwide review 2020[J]. Geothermics, 2021, 89: 101970.
[6] 张盛生, 张磊, 田成成, 等. 青海共和盆地干热岩赋存地质特征及开发潜力[J]. 地质力学学报, 2019, 25(4): 501-508.
  ZHANG Shengsheng, ZHANG Lei, TIAN Chengcheng, et al. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin[J]. Journal of Geomechanics, 2019, 25(4): 501-508.
[7] 赵悦安. 超临界地热系统水和CO2取热性能分析: 以意大利Larderello地热田为例[D]. 长春: 吉林大学, 2023.
  ZHAO Yuean. Analysis of heat extraction performance of water and CO2 in supercritical geothermal system: A case study of Larderello Geothermal Field in Italy[D]. Changchun: Jilin University, 2023.
[8] 赵明坤. 郾城凸起明化镇组地热成因机制及采热驱动下多场演化规律[D]. 徐州: 中国矿业大学, 2022.
  ZHAO Mingkun. The genesis mechanism and multi-field evolution driven by heat extraction of the Minghuazhen formation geothermal reservoir in Yancheng uplift[D]. Xuzhou: China University of Mining and Technology, 2022.
[9] 袁利娟, 张进平, 何云成, 等. 北京市通州区地热流体水化学和同位素特征及其地热学意义[J]. 地质论评, 2021, 67(5): 1545-1556.
  YUAN Lijuan, ZHANG Jinping, HE Yuncheng, et al. Hydrochemical and isotopic characteristics of geothermal fluids in Tongzhou District, Beijing, and their geothermal significance[J]. Geological Review, 2021, 67(5): 1545-1556.
[10] TESTER J, BLACKWELL D, PETTY S, et al. The future of geothermal energy: An assessment of the energy supply potential of engineered geothermal systems(EGS) for the United States[C]// Proceedings of Thirty-second Workshop on Geothermal Reservoir Engineering, Stanford, CA: Stanford University, January 22-24, 2007.
[11] LUND J W, FREESTON D H. World-wide direct uses of geothermal energy 2000[J]. Geothermics, 2001, 30(1): 29-68.
[12] 张育平, 杨潇, 刘俊, 等. 地源热泵系统能效提升途径[J]. 油气藏评价与开发, 2023, 13(6): 726-740.
  ZHANG Yuping, YANG Xiao, LIU Jun, et al. Overview of solutions to improve efficiency of ground source heat pump system[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 726-740.
[13] 黄光寿, 郭丽丽, 黄凯. 河南省地热资源综合评价[J]. 地质找矿论丛, 2019, 34(4): 633-639.
  HUANG Guangshou, GUO Lili, HUANG Kai. Comprehensive evaluation of geothermal resources in Henan province[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(4): 633-639.
[14] 王现国, 张慧, 张娟娟. 开封凹陷区地热水水化学特征及同位素分析[J]. 安全与环境工程, 2012, 19(6): 88-92.
  WANG Xianguo, ZHANG Hui, ZHANG Juanjuan. Analysis on the hydrochemical characteristics and isotope of geothermal water in Kaifeng depression[J]. Safety and Environmental Engineering, 2012, 19(6): 88-92.
[15] 朱红丽. 开封市超深层地热水人工回灌补源研究[D]. 焦作: 河南理工大学, 2011.
  ZHU Hongli. The research on artificial recharge of super-deep geothermic water in Kaifeng city[D]. Jiaozuo: Henan Polytechnic University, 2011.
[16] 王心义, 聂新良, 赵卫东. 开封凹陷区地温场特征及成因机制探析[J]. 煤田地质与勘探, 2001, 29(5):4-7.
  WANG Xinyi, NIE Xinliang, ZHAO Weidong. Geothermal field’s characteristics and forming mechanisms in Kaifeng Depression[J]. Coal Geology & Exploration, 2001, 29(5): 4-7.
[17] 何东博, 任路, 郝杰, 等. 基于层次分析法的地热资源评价体系研究:以河北省曹妃甸地区中深层水热型砂岩储层为例[J]. 油气藏评价与开发, 2023, 13(6): 713-725.
  HE Dongbo, REN Lu, HAO Jie, et al. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725.
[18] 郭鸿, 夏岩, 陈雷, 等. 废弃油气井改造的地热井换热性能影响因素模拟研究[J]. 油气藏评价与开发, 2022, 12(6): 850-858.
  GUO Hong, XIA Yan, CHEN Lei, et al. Numerical simulation on influence factors of heat transfer performance of geothermal wells which transformed from abandoned oil and gas wells[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 850-858.
[19] 丛淑飞, 周宏, 赵艳, 等. 大民屯凹陷沈水501中深层地热田三维地质建模技术研究[J]. 油气藏评价与开发, 2023, 13(6): 741-748.
  CONG Shufei, ZHOU Hong, ZHAO Yan, et al. 3D geological modeling technology of medium-deep geothermal field in Shenshui 501 geothermal field in Damintun Sag[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 741-748.
文章导航

/