油气藏评价与开发 >
2024 , Vol. 14 >Issue 6: 857 - 863
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.005
河流相砂岩热储地热田开发利用关键技术——以渤海湾盆地南堡凹陷高尚堡-柳赞地热田为例
收稿日期: 2024-02-10
网络出版日期: 2024-12-10
基金资助
中国石油冀东油田公司重大科技项目“盆地型地热能开发关键技术研究与实践”(KT2023A01)
Key technologies for exploitation and utilization of geothermal fields in fluvial sandstone thermal reservoirs: A case study of Gaoshangpu-Liuzan geothermal field in Nanpu Sag, Bohai Bay Basin
Received date: 2024-02-10
Online published: 2024-12-10
渤海湾盆地黄骅坳陷南堡凹陷地热资源富集,目前已经发现了高尚堡-柳赞、南堡、马头营等多个地热田。热储主要以馆陶组河流相砂岩为主,具有温度较高(70~90 ℃)、水量较大(100 m3/h)、热储规模大、盖层较厚等优点,但仍然存在着较多的开发难题,包括开发靶区优选、开发可持续性评价、高效的钻采工艺、砂岩储层回灌、热水集中远距离输送和智能监控等一系列难题。针对这些难题,通过对高尚堡-柳赞地热田开发的实践探索,形成了针对性的5项核心技术,包括勘探区带优选及资源精细评价技术、井位部署及热场模拟技术、地热井钻完井及砂岩热储无压回灌技术、多井集输及地热水长距离输送技术、地热开发智能管控技术,为在高尚堡-柳赞地热田地热供暖项目建设及冀东油田地热开发提供了技术支撑。
赵忠新 , 李洪达 , 颜艺灿 , 任路 . 河流相砂岩热储地热田开发利用关键技术——以渤海湾盆地南堡凹陷高尚堡-柳赞地热田为例[J]. 油气藏评价与开发, 2024 , 14(6) : 857 -863 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.005
The Nanpu Sag in the Huanghua Depression of the Bohai Bay Basin is rich in geothermal resources, with multiple geothermal fields identified, including Gaoshangpu-Liuzan, Nanpu, and Matouying. The thermal reservoirs, primarily composed of fluvial sandstone from the Guantao Formation, exhibit advantages such as high temperatures(70-90 ℃), significant water amounts (100 m3/h), large-scale reservoirs, and thick caprocks. However, their development faces several challenges, including optimal target area selection, sustainability evaluation, efficient drilling and production processes, reinjection into sandstone reservoirs, long-distance centralized thermal water transportation, and intelligent monitoring. To address these challenges, practical exploration in the Gaoshangpu-Liuzan geothermal field has led to the development of five core technologies: 1) optimization and detailed resource evaluation technology for exploration areas; 2) well placement and thermal field simulation technology; 3) geothermal well drilling, completion, and pressure-free reinjection for sandstone thermal reservoirs; 4) multi-well collection and long-distance thermal water transportation technology; 5) intelligent management and control technology for geothermal development. These advancements provide technical support for geothermal heating projects in the Gaoshangpu-Liuzan geothermal field and the geothermal development efforts of Jidong Oilfield.
[1] | 刘欢. 鲁北平原孔隙热储地热资源开发利用模式研究[D]. 青岛: 山东科技大学, 2014. |
LIU Huan. Study on the exploitation and utilization model of geothermal resources in the pore thermal reservoir of Lubei Plain[D]. Qingdao: Shandong University of Science and Technology, 2014. | |
[2] | 李锋, 黄文博, 胡灯明, 等. 油区地热能综合利用方案分析:以福山油田为例[J]. 新能源进展, 2022, 10(2): 126-136. |
LI Feng, HUANG Wenbo, HU Dengming, et al. Analysis on comprehensive utilization scheme of geothermal energy in oil area: Taking Fushan Oilfield as an example[J]. Advances in New and Renewable Energy, 2022, 10(2): 126-136. | |
[3] | XIE T, WANG Q, ZHANG G, et al. Low-carbon economic dispatch of virtual power plant considering hydrogen energy storage and tiered carbon trading in multiple scenarios[J]. Processes, 2023, 12(1): 90. |
[4] | 宋超凡, 赵军, 尹洪梅, 等. 碳中和背景下油田区地热资源的低成本可持续利用[J]. 华电技术, 2021, 43(11): 66-73. |
SONG Chaofan, ZHAO Jun, YIN Hongmei, et al. Low-cost and sustainable utilization of geothermal resources in oilfields to achieve carbon neutrality[J]. Huadian Technology, 2021, 43(11): 66-73. | |
[5] | 曹锐, 多吉, 李玉彬, 等. 我国中深层地热资源赋存特征、发展现状及展望[J]. 工程科学学报, 2022, 44(10): 1623-1631. |
CAO Rui, DUO Ji, LI Yubin, et al. Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China[J]. Chinese Journal of Engineering, 2022, 44(10): 1623-1631. | |
[6] | 史帅航, 过瑞, 陈迪, 等. 双碳目标下地热资源开发利用的创新思路探析[J]. 化工矿产地质, 2022, 44(2): 159-163. |
SHI Shuaihang, GUO Rui, CHEN Di, et al. Innovative ideas for development and utilization of geothermal resources under “Double Carbon” goal[J]. Geology of Chemical Minerals, 2022, 44(2): 159-163. | |
[7] | 汪集暘, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1-12. |
WANG Jiyang, QIU Nansheng, HU Shengbiao, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Science Frontiers, 2017, 24(3): 1-12. | |
[8] | 赵玥. 新能源需新突破[J]. 中国石油石化, 2023, 25(8): 26-29. |
ZHAO Yue. New energy requires new breakthroughs[J]. China Petrochem, 2023, 25(8): 26-29. | |
[9] | 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268. |
ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2): 255-268. | |
[10] | 王钧, 黄尚瑶, 黄歌山, 等. 中国地温分布的基本特征[M]. 北京: 地震出版社, 1990. |
WANG Jun, HUANG Shangyao, HUANG Geshan, et al. Basic characteristics of ground temperature distribution in China[M]. Beijing: Seismological Press, 1990. | |
[11] | 龚育龄. 中国东部渤海湾盆地热结构和热演化[M]. 北京: 原子能出版社, 2011. |
GONG Yuling. Thermal structure and evolution of Bohai Bay Basin, eastern China[M]. Beijing: Atomic energy Press, 2011. | |
[12] | 饶松, 肖红平, 王朱亭, 等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业, 2023, 43(5): 141-152. |
RAO Song, XIAO Hongping, WANG Zhuting, et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in Bohai Bay Basin[J]. Natural Gas Industry, 2023, 43(5): 141-152. | |
[13] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937 |
WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. | |
[14] | 董月霞, 周海民, 夏文臣. 南堡凹陷火山活动与裂陷旋回[J]. 石油与天然气地质, 2000, 21(4): 304-307. |
DONG Yuexia, ZHOU Haimin, XIA Wenchen. Volcanic activities and rift subsidence cycles in Nanpu Sag[J]. Oil & Gas Geology, 2000, 21(4): 304-307. | |
[15] | 董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践: 以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3): 666-676. |
DONG Yuexia, HUANG Hongxiang, REN Lu, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China[J]. Petroleum Exploration and Development, 2021, 48(3): 666-676. | |
[16] | 赵忠新, 李洪达, 颜艺灿, 等. 中国东部断陷地热与油气成藏条件对比分析: 以冀东油田南堡凹陷为例[J]. 油气与新能源, 2023, 35(2): 68-72. |
ZHAO Zhongxin, LI Hongda, YAN Yican, et al. Comparative analysis on geothermal and oil and gas accumulation conditions in faults basins in eastern China: Taking Nanpu Sag of Jidong Oilfield as an example[J]. Petroleum and New Energy, 2023, 35(2): 68-72. | |
[17] | 张育平, 杨潇, 刘俊, 等. 地源热泵系统能效提升途径[J]. 油气藏评价与开发, 2023, 13(6): 726-740. |
ZHANG Yuping, YANG Xiao, LIU Jun, et al. Overview of solutions to improve efficiency of ground source heat pump system[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 726-740. | |
[18] | 何东博, 任路, 郝杰, 等. 基于层次分析法的地热资源评价体系研究: 以河北省曹妃甸地区中深层水热型砂岩储层为例[J]. 油气藏评价与开发, 2023, 13(6): 713-725. |
HE Dongbo, REN Lu, HAO Jie, et al. Quantitative evaluation system of geothermal resources based on analytic hierarchy process: A case study of middle-deep hydrothermal sandstone reservoir in Caofeidian of Hebei Province[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 713-725. | |
[19] | 国家能源局.地热资源储量分级评价方法: NB∕T 10700—2021[S]. 北京: 中国石化出版社, 2021: 1. |
National Energy Administration.Classification and assessment methods for geothermal resources/reserves: NB∕T 10700—2021[S]. Beijing: China Petrochemical Press, 2021: 1. | |
[20] | 国家能源局.地热储层评价方法: NB∕T 10263—2019[S]. 北京: 中国石化出版社, 2019: 1. |
National Energy Administration.Evaluating methods of geothermal reservoirs: NB∕T 10263—2019[S]. Beijing: China Petrochemical Press, 2019: 1. |
/
〈 | 〉 |