油气藏评价与开发 >
2024 , Vol. 14 >Issue 6: 864 - 871
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.006
废弃油气井改造地热井换热性能分析及内管设计优化
收稿日期: 2024-04-10
网络出版日期: 2024-12-10
基金资助
国家自然科学基金项目“中深层地埋管群取储热岩土热运移机理及能效调控方法研究”(52306274);中国博士后基金项目“地埋管群取储热长期运行换热机理及耦合热泵系统设计优化方法研究”(2023TQ0262);陕西省博士后基金项目“实际运行场景下中深层地埋管供热系统设计方法重构”(2023BSHYDZZ27);陕西省城市地质与地下空间工程技术研究中心和陕西省公益性地质调查项目“陕北废弃油气井地热能开发利用研究”(202116)
Analysis of heat exchange performance and optimization of inner pipe design in geothermal wells reconstructed from depleted oil and gas wells
Received date: 2024-04-10
Online published: 2024-12-10
中深层地热井钻井成本高昂,利用现有废弃油气井进行地热井改造可大幅度降低钻井成本。研究基于陕北地区某废弃油气井改造地热井换热试验工程参数及测试数据,开展了长期取热性能数值模拟,探讨了内管设计参数对取热性能的影响。研究发现内管保温性能提升对地热井取热功率影响随深度增加及流量减少而更加明显,但对于内管管径而言,其对取热性能影响较小,且对深度及流量变化不敏感,因此,总体影响程度有限。此外,研究量化了内管管材选取对系统全生命周期经济性的影响,结果表明:给定工况下,内管热导率从0.2 W/(m·K)降至0.02 W/(m·K),一个供暖季内地热井埋管出口水温可提升0.66 ℃,但全生命周期平均供热成本增加了0.035元/(kW·h),投资回收期延长了1.83 a。因此,考虑采用高保温性能内管材料增益作用有限,建议应在优先考虑耐温承压条件下进行废弃油气井改造地热井内管设计。
金光 , 滕宏泉 , 郭鸿 , 夏晴 , 申振坤 , 刘强 , 李双涛 , 牛剑波 , 蔡皖龙 . 废弃油气井改造地热井换热性能分析及内管设计优化[J]. 油气藏评价与开发, 2024 , 14(6) : 864 -871 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.006
Drilling medium-deep geothermal wells is costly, but converting existing depleted oil and gas wells into geothermal wells can significantly reduce these costs. This study analyzed heat extraction performance based on the engineering parameters and test data of a geothermal well reconstructed from a depleted oil and gas well in the northern Shaanxi region. Long-term heat extraction performance was simulated numerically to explore the impact of inner pipe design parameters. The study found that improving the thermal insulation of the inner pipe had a more significant impact on geothermal well heat extraction power as depth increased and flow rate decreased. However, the diameter of the inner pipe had a minimal influence on heat extraction performance and was less sensitive to changes in depth and flow rate, resulting in a limited overall impact. Additionally, the study quantified the effect of inner pipe material selection on the system's economic performance throughout its life cycle. Results indicated that reducing the inner pipe's thermal conductivity from 0.2 W/(m·K) to 0.02 W/(m·K) under certain working conditions could increase the outlet water temperature by 0.66 °C during one heating season. However, it also raised the average heating cost by 0.035 RMB/(kW·h) and extended the payback period by 1.83 a. Therefore, considering the limited benefits of using high-insulation inner pipe materials, it is recommended to prioritize temperature and pressure resistance when designing inner pipes for geothermal wells reconstructed from depleted oil and gas wells.
[1] | 杨华磊, 杨敏. 碳达峰碳中和:中国式现代化的能源转型之路[J]. 经济问题, 2024, 7(3): 1-7. |
YANG Hualei, YANG Min. Carbon neutrality: The path to Chinese modernization[J]. Economic Issues, 2024, 7(3): 1-7. | |
[2] | 中国建筑节能协会建筑能耗与碳排放数据专委会. 2021中国建筑能耗与碳排放研究报告[R]. 北京: 中国建筑工业出版社, 2021. |
China association of building energy efficiency building energy consumption and carbon emission data special committee. 2021 China building energy consumption and carbon emission research report[R]. Beijing: China Building Industry Press, 2021. | |
[3] | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告(2021)[M]. 北京: 中国建筑工业出版社, 2021. |
Building Energy Efficiency Research Center, Tsinghua University. Annual development research report on building energy efficiency in China(2021)[M]. Beijing: China Architecture & Building Press, 2021. | |
[4] | 中国地质调查局. 中国地热能发展报告(2018)[R]. 北京: 中国建筑工业出版社, 2018. |
China Geological Survey. Report on the development of geothermal energy in China(2018)[R]. Beijing: China Architecture & Building Press, 2018. | |
[5] | 陈家玺. 中深层地热资源供暖的环保效益探究[J]. 自然资源情报, 2022, 23(4): 41-45. |
CHEN Jiaxi. Research on the environmental benefits of medium and deep geothermal resource heating[J]. Natural Resources Information, 2022, 23(4): 41-45. | |
[6] | MEHMOOD A. 基于印第斯盆地废弃油气井转地热井的潜力评价[D]. 青岛: 中国石油大学(华东), 2019. |
MEHMOOD A. Evaluation of the heat production potential from reservoirs by retrofitting abandoned oil and gas wells into geothermal wells in Indus basin[D]. Qingdao: China University of Petroleum(East China), 2019. | |
[7] | 张晓霞. 我国重点油田地热利用概况及相应对策分析[J]. 化工管理, 2019, 33(26): 224. |
ZHANG Xiaoxia. Geothermal utilization of key oilfields in China and corresponding countermeasures[J]. Chemical Industry Management, 2019, 33(26): 224. | |
[8] | WANG Z H, WANG F H, LIU J, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
[9] | BU X B, MA W B, LI H S. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80-85. |
[10] | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752. |
KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle of heat transfer technology in deep well and its heat transfer evaluation[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752. | |
[11] | DENG J W, HE S, WEI Q P, et al. Field test and optimization of heat pumps and water distribution systems in medium-depth geothermal heat pump systems[J]. Energy and Buildings, 2020, 209(9): 109724. |
[12] | PAN A Q, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141(1):1056-1065. |
[13] | LUO Y Q, GUO H S, MEGGERS F, et al. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis[J]. Energy, 2019, 185(5): 1298-1313. |
[14] | WANG C L, WANG X, LU J L, et al. A semi-analytical heat transfer model for deep borehole heat exchanger considering groundwater seepage[J]. International Journal of Thermal Sciences, 2022, 175: 107465. |
[15] | HUANG X W, YAO Z S, CAI H B, et al. An analytical heat-transfer model for coaxial borehole heat exchanger with segmented method[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2020, 1: 1-27. |
[16] | ZHANG W K, LI W J, SORENSEN B R, et al. Comparative analysis of heat transfer performance of coaxial pipe and U-type deep borehole heat exchangers[J]. Geothermics, 2021, 96(5): 102220. |
[17] | HUANG X W, YAO Z S, CAI H B, et al. Performance evaluation of coaxial borehole heat exchangers considering ground non-uniformity based on analytical solutions[J]. International Journal of Thermal Sciences, 2021, 170: 107162. |
[18] | JIA G S, MA Z D, XIA Z H, et al. A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions[J]. Renewable Energy, 2022, 182(1): 296-313. |
[19] | NIAN Y L, CHENG W L. Evaluation of geothermal heating from abandoned oil wells[J]. Energy, 2018, 142: 592-607. |
[20] | WESTPHAL D, WEIJERMARS R. Economic appraisal and scoping of geothermal energy extraction projects using depleted hydrocarbon wells[J]. Energy Strategy Reviews, 2018, 22: 348-364. |
[21] | ZHU Y H, LI K W, LIU C W, et al. Geothermal power production from abandoned oil reservoirs using in situ combustion technology[J]. Energies, 2019, 12(23): 4476. |
[22] | ZHENG D Y, FENG S N, LI M L, et al. The approach on joint operation of modified waste oil well and lithium bromide absorption equipment[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(4): 8-10. |
[23] | LIN Z Y, LIU K, LIU J, et al. Numerical model for geothermal energy utilization from double pipe heat exchanger in abandoned oil wells[J]. Advances in Geo-Energy Research, 2021, 5(2): 212-221. |
[24] | 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22. |
WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1): 14-22. | |
[25] | 杨露梅, 邝荣禧, 郭慧, 等. 苏南现代化建设示范区现今地温场特征及影响因素[J]. 现代地质, 2023, 37(4): 954-962. |
YANG Lumei, KUANG Rongxi, GUO Hui, et al. Current geothermal field of the south Jiangsu modernization demonstrative area and its influencing factors[J]. Geoscience, 2023, 37(4): 954-962. | |
[26] | 姜静华, 高远, 张育平, 等. 中深层套管式地热井取热性能研究及经济性分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(6): 851-859. |
JIANG Jinghua, GAO Yuan, ZHANG Yuping, et al. Research on heat extraction performance of deep coaxial borehole heat exchanger and its economic analysis[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2021, 53(6): 851-859. | |
[27] | 刘俊, 王沣浩, 张育平, 等. 中深层套管式换热器沿程传热与设计参数研究[J]. 工程热物理学报, 2022, 43(10): 2770-2781. |
LIU Jun, WANG Fenghao, ZHANG Yuping, et al. Study on heat transfer and design parameters along the process of medium and deep casing heat exchanger[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2770-2781. | |
[28] | 郭鸿, 夏岩, 陈雷, 等. 废弃油气井改造的地热井换热性能影响因素模拟研究[J]. 油气藏评价与开发, 2022, 12(6): 850-858. |
GUO Hong, XIA Yan, CHEN Lei, et al. Numerical simulation on influence factors of heat transfer performance of geothermal wells which transformed from abandoned oil and gas wells[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 850-858. | |
[29] | CUI Y L, ZHU J, TWAHA S, et al. Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review[J]. Energy Conversion and Management, 2019, 191(3): 208-236. |
[30] | 杨雄, 姜静华, 王沣浩, 等. 中深层地热井地热供热系统长期取热性能评价与经济性分析[J]. 暖通空调, 2023, 53(7): 160-165. |
YANG Xiong, JIANG Jinghua, WANG Fenghao, et al. Evaluation and economic analysis of long-term heat extraction performance of medium and deep buried pipe geothermal heating systems[J]. Journal of HV & AC, 2023, 53(7): 160-165. | |
[31] | PHILIPP H, OLAF K, UWE-JENS G, et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J]. Applied Thermal Engineering, 2016, 100: 421-433. |
/
〈 | 〉 |