地热能开发与利用

陕西地区地热井同井分层采灌取热特性

  • 刘承诚
展开
  • 1.中国石化石油工程技术研究院有限公司,北京 102206
    2.中国石化地热资源开发利用重点实验室,北京 102206
刘承诚(1991—),女,博士,助理研究员,主要从事新能源技术与井下工具研发工作。地址:北京市昌平区百沙路197号中国石化石油工程技术研究院有限公司,邮政编码:102206。E-mail:liuchch.sripe@sinopec.com

收稿日期: 2024-07-08

  网络出版日期: 2024-12-10

基金资助

中国石化科技攻关项目“地热井增注增采与分层采灌技术研究”(P22088)

Heat extraction characteristics of stratified production and reinjection in a single geothermal well in Shaanxi

  • LIU Chengcheng
Expand
  • 1. Sinopec Research Institute of Petroleum Engineering Co.,Ltd., Beijing 102206, China
    2. Sinopec Key Laboratory of Geothermal Resources Exploitation and Utilization, Beijing 102206, China

Received date: 2024-07-08

  Online published: 2024-12-10

摘要

地热能作为一种关键的清洁可再生资源,在中国储量丰富,尤其是中深层地热,资源开发潜力巨大。推动中深层地热资源的开发利用,对于优化中国能源消费结构、实现节能减排以及推进“双碳”目标具有深远影响。研究以陕西地区某地热井为例,提出了在地热井同-井筒内实施“下采上灌”的技术方案,综合考虑了内管-环空-井周地层的动态换热过程,构建了水平井井筒和储层流固热三维耦合模型,通过这一模型深入探讨了隔层厚度、地层渗透率和孔隙度以及完井管柱结构对取热效果的影响。研究结果表明隔层的有无对取热效果的影响显著。无隔层时,在分层采灌30 a后,采出水温度下降高达9 ℃。隔层厚度为40 m时,取热效果最好。在开采量和回灌量一定时,回灌层和隔层的孔隙度和渗透率的降低会降低取热效果,而开采层的渗透率和孔隙度对取热效果的影响不显著。

本文引用格式

刘承诚 . 陕西地区地热井同井分层采灌取热特性[J]. 油气藏评价与开发, 2024 , 14(6) : 878 -884 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.008

Abstract

Geothermal energy, as a key clean and renewable resource, is abundant in China, particularly in medium- to deep-layer geothermal reservoirs, which hold significant development potential. Promoting the development and utilization of medium- to deep-layer geothermal resources is crucial for optimizing China’s energy consumption structure, achieving energy savings and emissions reductions, and advancing the “Dual Carbon” goals. This study took a geothermal well in Shaanxi as an example and proposed a “lower production and upper reinjection” technical scheme implemented within a single wellbore. By comprehensively considering the dynamic heat exchange processes among the inner pipe, annulus, and surrounding formation, a 3D coupled thermal-fluid-solid model of the horizontal wellbore and reservoir was established. The model was used to investigate the effects of interlayer thickness, formation permeability and porosity, and completion tubing structure on heat extraction efficiency. Results indicated that the interlayer significantly impacted heat extraction. Without an interlayer, the extracted water temperature decreased by as much as 9°C after 30 a of stratified production and reinjection. The optimal heat extraction was achieved with an interlayer thickness of 40 m. While maintaining constant production and reinjection rates, reductions in porosity and permeability of the reinjection layer and interlayer negatively impacted heat extraction, whereas the permeability and porosity of the production layer had minimal influence.

参考文献

[1] 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947.
  XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947.
[2] 赵艳婷, 沈健, 赵苏民, 等. 中深层砂岩回灌井成井工艺优化及效果分析: 以天津市明化镇组为例[J]. 油气藏评价与开发, 2023, 13(6): 765-772.
  ZHAO Yanting, SHEN Jian, ZHAO Sumin, et al. Well completion technology optimization and application effect analysis of medium-deep sandstone reinjection wells: a case study of Minghuazhen Formation in Tianjin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 765-772.
[3] 薛宇泽, 张玉贵, 麻银娟, 等. 鄂尔多斯盆地东南缘岩溶热储对井回灌示踪试验[J]. 油气藏评价与开发, 2023, 13(6): 757-780.
  XUE Yuze, ZHANG Yugui, MA Yinjuan, et al. Reinjection tracer test of karst geothermal reservoir in the southeastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 757-780.
[4] JUNG R. EGS-goodbye or back to the future[C]// Paper ISRM-ICHF-2013-022 presented at the ISRM International Conference for Effective and Sustainable Hydraulic Fracturing, Brisbane, Australia, May 2013.
[5] 王敏黛, 郭清海, 严维德, 等. 青海共和盆地中低温地热流体发电[J]. 地球科学-中国地质大学学报, 2014, 9: 1317-1322.
  WANG Mindai, GUO Qinghai, YAN Weide, et al. Medium-Low-Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin,Qinghai Province[J]. Earth Science-Journal of China University of Geosciences, 2014, 9: 1317-1322.
[6] 宋先知, 李根生, 王高升, 等. 中深层地热能取热技术研究进展[J]. 科技导报. 2022, 40(20): 42-51.
  SONG Xianzhi, LI Gensheng, WANG Gaosheng, et al. Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science & Technology Review, 2022, 40(20): 42-51.
[7] 王磊. 中深层砂岩热储回灌井参数优化模拟[J]. 科学技术与工程, 2023, 23(5): 1823-1832.
  WANG Lei. Simulation on parameters optimization of middle deep sandstone heat storage and recharge wells[J]. Science Technology and Engineering, 2023, 23(5): 1823-1832.
[8] 周舟, 金衍, 曾义金, 等. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1425-1430.
  ZHOU Zhou, JIN Yan, ZENG Yijin, et al. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe Basin, Qinghai[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1425-1430.
[9] 高小荣, 李红岩, 任小庆, 等. 岩土分层对中深层U型对接井换热性能的影响[J]. 油气藏评价与开发, 2023, 13(6): 703-712.
  GAO Xiaorong, LI Hongyan, REN Xiaoqing, et al. Effect of rock-soil stratification on the heat transfer performance of U-shaped butted well in medium-deep layers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 703-712
[10] ZHUANG L, KIM K Y, DIAZ M, et al. Evaluation of water saturation effect on mechanical properties and hydraulic fracturing behavior of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104321.
[11] 宋伟, 倪龙, 姚杨. 单井循环系统在不同初始地温下的特性[J]. 哈尔滨工程大学学报, 2014, 35(3): 342-6.
  SONG Wei, NI Long, YAO Yang. The characteristics of a single well circulation system at different initial ground temperatures[J] Journal of Harbin Engineering University, 2014, 35 (3): 342-6
[12] 倪龙, 姜益强, 姚杨, 等. 抽灌同井季节性储能分析[J]. 哈尔滨工业大学学报, 2010, (8): 1287-91.
  NI Long, JIANG Yiqiang, YAO Yang, et al. Seasonal energy storage analysis of pumping and irrigation in the same well[J] Journal of Harbin Institute of Technology, 2010, (8): 1287-91.
[13] BAYER P, RYBACH L, Blum P, et al. Review on life cycle environmental effects of geothermal power generation[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 446-63.
[14] S?RENSEN S N, REFFSTRUP J. Prediction of long-term operational conditions for single-well groundwater heat pump plants[R]. Warrendale: SAE International, 1992.
[15] NI L, LI H R, JIANG Y Q, et al. A model of groundwater seepage and heat transfer for single-well ground source heat pump systems[J]. Applied Thermal Engineering, 2011, 31(14): 2622-2630.
[16] 宋先知, 张逸群, 李根生, 等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(9): 971-981.
  SONG Xianzhi, ZHANG Yiqun, LI Gensheng, et al. Research on closed cycle heat extraction technology of coaxial casing in geothermal well in Xiongan New Area[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2021, 54(9): 971-981.
[17] ZHAO W, LIU L, LI J, et al. Reinjection modeling in sandstone geothermal reservoirs: A case study of Dezhou geothermal heating demonstration project[J]. Natural Gas Industry B, 2024, 11(1): 106-120.
[18] LI J, KANG F, BAI T, et al. Geo-temperature response to reinjection in sandstone geothermal reservoirs[J]. Geothermal Energy, 2023, 11(1): 35
[19] 尚宏波, 赵春虎, 靳德武, 等. 中深层地热单井换热数值计算[J]. 煤田地质与勘探, 2019, 47(6): 159-166.
  SHANG Hongbo, ZHAO Chunhu, JIN Dewu, et al. Numerical calculation of heat transfer in single medium-deep geothermal well[J]. Coal Geology & Exploration, 2019, 47(6): 159-166.
[20] 段晓飞, 康凤新, 吴晓华, 等. 基于采灌均衡模拟的砂岩热储合理采灌井距计算方法[J]. 地质科技通报, 2024, 43(5): 170-180.
  DUAN Xiaofei, KANG Fengxin, WU Xiaohua, et al. Calculation method of reasonable well spacing in sandstone geothermal reservoir based on production-reinjection equilibrium simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 170-180.
[21] 赵志宏, 刘桂宏, 王佳铖, 等. 城市深层地热能可持续开采多场耦合效应数值模拟研究进展[J]. 煤炭学报, 2023, 48(3): 1126-1138.
  ZHAO Zhihong, LIU Guihong, WANG Jiacheng, et al. Coupled multi-field effect on sustainable development of deep geothermal energy in cities[J]. Journal of China Coal Society, 2023, 48(3): 1126-1138.
[22] 王朱亭, 胡圣标, 王一波, 等. 抽灌采热模式下导水断裂对热储地热资源评价的影响[J/OL]. 地球物理学进展, 1-10. [2024-10-31]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1226.015.html.
  WANG ZhuTing, HU ShengBiao, WANG YiBo, et al. Effect of water flowing fracture on the evaluation of geothermal resources under the doublet well system for geothermal extracting[J/OL]. Progress in Geophysics,1-10. [2024-10-31]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1226.015.html.
[23] 赵西蓉. 渭河断陷盆地地热资源赋存特征与热储分析[J]. 煤田地质与勘探, 2006, (2): 51-54.
  ZHAO Xirong. Occurrence features of geothermal resources and geothermal bearing analysis in Weihe basin[J]. Coal Geology&Exploration, 2006, (2): 51-54.
[24] 饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190.
  RAO Song, JIANG Guangzheng, GAO Yajie, et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophysics, 2016, 59(6): 2176-2190. (in Chinese)
[25] 刘润川, 任战利, 任文波, 等. 渭河盆地西安凹陷地热田热储特征及开发方式[J]. 地质学报, 2023, 97(10): 3456-3474.
  LIU Runchuan, REN Zhanli, REN Wenbo, et al. Thermal storage characteristics and development mode of geothermal field in Xi an sag of the Weihe basin[J]. Acta Geologica Sinica, 2023, 97(10):3456-3474.
[26] 张伟, 孙江, 曲占庆, 等. 高温地热开采热流固耦合模型及综合评价方法[J]. 地球物理学进展, 2019, 34(2): 668-675.
  ZHANG Wei, SUN Jiang, QU Zhanqing, et al. Thermo-hydro-mechanical coupling model and comprehensive evaluation method of high temperature geothermal extraction. Progress in Geophysics, 2019, 34(2): 668-675.
[27] 单丹丹. 井筒传热与随机裂隙储层热流耦合数值模拟研究[D]. 大庆: 东北石油大学, 2021.
  SHAN Dandan. Numerical simulation study of the wellbore heat transfer and the thermal-hydraulic coupling in random fracture reservoirs[D]. Daqing: Northeast Petroleum University, 2021.
[28] MA Ling, ZHAO Yazhou, YIN Hongmei et al. A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution[J]. Energy Conversion and Management, 2020, 204, 112308.
文章导航

/