油气藏评价与开发 >
2024 , Vol. 14 >Issue 6: 885 - 891
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.009
基于通量监测-CFD模拟的CO2驱油封存地表泄漏大气扩散研究
收稿日期: 2023-12-14
网络出版日期: 2024-12-10
基金资助
国家重点研发计划项目“区域二氧化碳捕集与封存关键技术研发与示范”(2022YFE0206800)
Atmospheric diffusion study of surface leakage from CO2 enhanced oil recovery with carbon capture and storage based on flux monitoring-CFD simulation
Received date: 2023-12-14
Online published: 2024-12-10
CO2驱油封存项目兼有提高石油采收率和封存CO2的双重效益,是目前最有经济活力的碳封存形式。然而,驱油封存项目通常含有多个井场,这些井场由于井筒的高CO2泄漏风险导致对区域有较大的安全和环境影响。针对以往基于井场点源泄漏大气扩散研究的不足,建立了一种基于井场面源通量监测的驱油封存项目地表泄漏大气CO2扩散研究方法。基于情景分析的华东某油田案例应用表明:采用基于涡度相关法的CO2泄漏通量监测可以获得整个井场的面源泄漏通量,为大范围CFD(计算流体力学)的模拟提供准确数据;多井场的CFD扩散模拟能够反映区域复杂的地形和多井场的泄漏,支撑来自井场泄漏的区域安全和环境风险管理。
瞿常青 , 林千果 . 基于通量监测-CFD模拟的CO2驱油封存地表泄漏大气扩散研究[J]. 油气藏评价与开发, 2024 , 14(6) : 885 -891 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.009
CO2 enhanced oil recovery(EOR) with carbon capture and storage(CCS) projects offer dual benefits of increasing oil recovery and CO2 storage, making it one of the most economically viable carbon sequestration methods nowadays. However, EOR-CCS projects typically involve multiple well sites, and the high risk of CO2 leakage from wellbores poses significant safety and environmental challenges over large areas. To address the limitations of previous atmospheric diffusion studies based on point-source leakage at well sites, a new method for studying surface CO2 leakage and atmospheric diffusion in EOR-CCS projects based on area-source flux monitoring at well sites was developed. A case study of an oilfield in East China, based on scenario analysis, demonstrated that CO2 leakage flux monitoring using the eddy covariance method could provide accurate data on area-source leakage fluxes for entire well sites, enabling large-scale computational fluid dynamics(CFD) simulations. Multi-well-site CFD diffusion simulations effectively captured the impact of complex regional topography and multiple well sites on CO2 leakage, supporting regional safety and environmental risk management for well site leakage.
[1] | IEA. World Energy Outlook 2018[R]. Paris: IEA, 2018. |
[2] | BERT M, OGUNLADE D, MANUELA L. IPCC special report on carbon dioxide capture and storage[M]. New York: Cambridge University Press, 2005. |
[3] | 李士伦, 汤勇, 段胜才, 等. CO2地质封存源汇匹配及安全性评价进展[J]. 油气藏评价与开发, 2023, 13(3): 269-297. |
LI Shilun, TANG Yong, DUAN Shengcai, et al. Progress in source-sink matching and safety evaluation of CO2 geological sequestration[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 269-297. | |
[4] | 张园, 张敏, 刘仁静, 等. 考虑微纳米限域效应对相平衡影响的CO2驱油机理研究[J]. 地学前缘, 2023, 30(2): 306-315. |
ZHANG Yuan, ZHANG Min, LIU Renjing, et al. Investigation of CO2 flooding considering the effect of confinement on phase behavior[J]. Earth Science Frontiers, 2023, 30(2): 306-315. | |
[5] | XING J, LIU Z Y, HUANG P, et al. Experimental and numerical study of the dispersion of carbon dioxide plume[J]. Journal of Hazardous Materials, 2013, 256: 40-48. |
[6] | LIU B, LIU X, LU C, et al. Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 419-432. |
[7] | WANG Z R, HU Y Y, JIANG J C. Numerical investigation of leaking and dispersion of carbon dioxide indoor under ventilation condition[J]. Energy and Buildings, 2013, 66(4): 61-66. |
[8] | MAZZOLDI A, HILL T, COLLS J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities[J]. Atmospheric Environment, 2008, 42(34): 8046-8054. |
[9] | 文虎, 樊贵县, 翟小伟, 等. 神华CCS项目大气监测系统及监测分析[J]. 安全与环境工程, 2015, 22(5): 73-78. |
WEN Hu, FAN Guixian, ZHAI Xiaowei, et al. Atmospheric monitoring system and analysis of Shenhua CCS project[J]. Safety and Environmental Engineering, 2015, 22(5): 73-78. | |
[10] | LI S, ZHANG Y M, LIN Q G, et al. Topography modelling for potentially leaked CO2diffusion and its application in human health risk assessment for carbon capture, utilization, and storage engineering in China[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103714. |
[11] | HSIEH K J, LIEN F S, YEE E. Dense gas dispersion modeling of CO2released from carbon capture and storage infrastructure into a complex environment[J]. International Journal of Greenhouse Gas Control, 2013, 17: 39-127. |
[12] | 朱前林, 范智涵, 王闯, 等. CO2封存泄漏大气扩散规律及监测方案: 以延长油田CO2-EOR工程为例[J]. 安全与环境学报, 2018, 18(4): 1432-1439. |
ZHU Qianlin, FAN Zhihan, WANG Chuang, et al. Dispersion features of the atmospheric monitoring program for CO2 leakage: A case study sample of the CO2-EOR pilot project of Yanchang Oil Field[J]. Journal of Safety and Environment, 2018, 18(4): 1432-1439. | |
[13] | CORTIS A, OLDENBURG C M. Short-range atmospheric dispersion of carbon dioxide[J]. Boundary-Layer Meteorology, 2009, 133: 17-34. |
[14] | 汪黎东, 顿小宝, 张天赢, 等. CO2地质封存中单井源泄漏风险的评估方法及模型[J]. 化工环保, 2013, 33(1): 76-79. |
WANG Lidong, DUN Xiaobao, ZHANG Tianying, et al. Risk assessment and modeling of CO2 leakage from single well in geological sequestration process[J]. Environmental Protection of Chemical Industry, 2013, 33(1): 76-79. | |
[15] | SWINBANK W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology. 1951, 8(3): 135-145. |
[16] | 沈艳, 刘允芬, 王堰. 应用涡动相关法计算水热、CO2通量的国内外进展概况[J]. 南京气象学院学报, 2005, 28(4): 559-566. |
SHEN Yan, LIU Yunfen, WANG Yan. Progress of vortex correlation method in calculating hydrothermal and CO2 fluxes at home and abroad[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(4): 559-566. | |
[17] | MIGLIAVACCA M, MERONI M, MANCA G, et al. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions[J]. Agricultural and Forest Meteorology 2009, 149(9): 460-476. |
[18] | LONG K D, FLANAGAN L B, CAI T B. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by Eddy covariance[J]. Global Change Biology, 2010, 16(9): 420-435. |
[19] | REYNOLDS O. On the dynamical theory of incompressible viscous fluids and the determination of criterion[J]. Philosophical Transactions of the Royal Society of London, 1895, 186: 123-164. |
[20] | WILCZAK J M, ONCLEY S P, STAGE S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology 2001, 99(1): 127-150. |
[21] | WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapor transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447): 85-100. |
[22] | ZHANG T, LI G Y, YU Y X, et al. Atmospheric diffusion profiles and health risks of typical VOC: Numerical modelling study[J]. Journal of Cleaner Production, 2020, (275): 122982. |
[23] | KIKUMOTO H, OOKA R, SUGAWARA H, et al. Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164: 13-21. |
[24] | 朱红亚. 多源气体泄漏扩散的实验及数值模拟研究[D]. 合肥: 中国科学技术大学, 2013. |
ZHU Hongya. Experimental and numerical simulation study of multi-source gas leakage and diffusion[D]. Hefei: University of Science and Technology of China, 2013. |
/
〈 | 〉 |