综合研究

缝洞型碳酸盐岩油藏水驱特征曲线类型及适应性——以塔河油田为例

  • 郑玲丽 ,
  • 朱冰倩 ,
  • 张宇豪 ,
  • 李小波 ,
  • 彭佳明 ,
  • 肖文联
展开
  • 1.西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
    2.中国石油勘探开发研究院,北京 100083
    3.中国石化西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830011
    4.中国石油塔里木油田分公司,新疆 库尔勒 841000
郑玲丽(1984—),女,硕士,实验师,从事非常规油气渗流物理及其在油气田开发中应用的教学与科研工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: zhengjessie@163.com
肖文联(1983—),男,博士,教授,主要从事非常规油气渗流物理及其在油气田开发中的应用研究工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: joshxiao@163.com

收稿日期: 2023-10-20

  网络出版日期: 2024-12-10

基金资助

国家自然科学基金项目“黏度可控的原位增黏体系构建及高效驱油机理研究”(U19B2010);西南石油大学非常规油气渗流物理青年科技创新团队“非常规油气渗流物理”(2018CXTD10)

Types and applicability of waterflooding characteristic curves in fractured-cavity carbonate reservoirs: A case study of Tahe Oilfield

  • ZHENG Lingli ,
  • ZHU Bingqian ,
  • ZHANG Yuhao ,
  • LI Xiaobo ,
  • PENG Jiaming ,
  • XIAO Wenlian
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu,Sichuan 610500, China
    2. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
    3. Research Institute of Exploration and Development, Sinopec Northwest China Oilfield Branch Company, Urumqi, Xinjiang 830011, China
    4. PetroChina Tarim Oilfield Branch Company, Korla, Xinjiang 841000, China

Received date: 2023-10-20

  Online published: 2024-12-10

摘要

水驱特征曲线在油田生产动态分析中被广泛使用,现有的水驱特征曲线大多是通过统计分析砂岩油藏的生产数据建立的,常用的有甲、乙、丙、丁4种类型。为探究这些类型是否适用于缝洞型碳酸盐岩油藏,以塔河缝洞型碳酸盐岩油藏为例,结合油藏缝洞结构和油水生产数据,确定甲型水驱曲线更适用于塔河缝洞型油藏水驱特征。研究发现,塔河油田长时间开发的255口油井呈现出6种含水率上升类型和4种水驱特征曲线类型。结合实例分析得到,受单洞控制的油井,呈现出单直线型水驱特征曲线和缓慢上升型含水率上升曲线;受双洞控制的油井,水驱特征曲线为双直线型,含水率上升曲线呈现出缓慢上升、快速上升和波动型;受双洞控制的油井在注水影响下,水驱特征曲线形态为三直线型,含水上升率曲线呈现出快速上升、暴性水淹型;多井位于多洞,缝洞结构复杂的油井,水驱特征曲线表现为不规则型,含水率上升曲线呈现出缓慢上升、快速上升、波动型和暴性水淹型。对比砂岩油藏的水驱特征曲线,明确了碳酸盐岩油藏的水驱特征曲线适用条件为稳定水驱原则(即直线原则)和无固定含水率原则,为缝洞型碳酸盐岩油藏的生产动态预测提供了基础。

本文引用格式

郑玲丽 , 朱冰倩 , 张宇豪 , 李小波 , 彭佳明 , 肖文联 . 缝洞型碳酸盐岩油藏水驱特征曲线类型及适应性——以塔河油田为例[J]. 油气藏评价与开发, 2024 , 14(6) : 899 -907 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.011

Abstract

Waterflooding characteristic curves are widely used in analyzing oilfield production dynamics. Most existing waterflooding characteristic curves are derived from statistical analyses of production data from sandstone reservoirs, commonly categorized into four types: Type A, Type B, Type C, and Type D. To assess the applicability of these curve types to fractured-cavity carbonate reservoirs, the Tahe fractured-cavity carbonate reservoir was selected as a case study. By analyzing reservoir fracture-cavity structures and oil-water production data, the Type A waterflooding curve was identified as more suitable for the Tahe reservoir. The study of 255 wells with long-term production data revealed six water cut increase patterns and four waterflooding characteristic curve types. Wells controlled by single cavities exhibited single-straight-line waterflooding characteristic curves and slow water cut increase patterns. Wells controlled by dual cavities displayed double-straight-line waterflooding characteristic curves, with water cut increase patterns categorized as slow rise, rapid rise, or fluctuating. For wells affected by water injection in dual-cavity structures, triple-straight-line waterflooding characteristic curves were observed, with water cut increase patterns featuring rapid rise and catastrophic flooding. Wells located in multi-cavity, complex fracture-cavity structures demonstrated irregular waterflooding characteristic curves, with water cut patterns including slow rise, rapid rise, fluctuating, and catastrophic flooding. A comparison with waterflooding characteristic curves of sandstone reservoirs clarified the applicability conditions for fractured-cavity carbonate reservoirs: adherence to the stable waterflooding principle(i.e., the straight-line principle) and the absence of a fixed water cut threshold. This study provides a foundation for predicting production dynamics in fractured-cavity carbonate reservoirs.

参考文献

[1] 俞启泰, 靳红伟. 关于广义水驱特征曲线[J]. 石油学报, 1995, 16(1): 61-70.
  YU Qitai, JIN Hongwei. About generalized water flooding characteristic curve[J]. Acta Petrolei Sinica, 1995, 16(1): 61-70.
[2] МАКСИМОВ М И. Метод подсчета извлекаемых запасов нефти в конечной стади эксплутации нефтяных пластовв условиях водой[J]. Геология Нефти и Газа, 1959, 5(3): 42-47.
[3] СЕРГЕЕВ В Б, МАРКЕЧКО Г А, ЛУКЬЯНОВА З М. Эффективность mероприятии по pегулированию pазработки арланского mесторождения[J]. Нефтяное Xозяйство, 1982, 11(6): 29-33.
[4] СИПАЧЕВ Н В, ПОСЕВИЧ А Г. О характеристиках вытеснеиия нефти водой[J]. Нефть и Газ, 1981, 21(12): 26-32.
[5] НАЗАРОВ С Н. К оценке извлекаемых запасов нефти по интегральным крмвых отбора нефти и воды[J]. АНХ, 1972, 9(5): 20-21.
[6] 童宪章. 天然水驱和人工注水油藏的统计规律探讨[J]. 石油勘探与开发, 1978, 5(6): 38-67.
  TONG Xianzhang. Discussion on statistical law of natural water flooding and artificial water injection reservoirs[J]. Petroleum Exploration and Development, 1978, 5(6): 38-67.
[7] 俞启泰. 水驱油田的驱替特征与递减特征[J]. 石油勘探与开发, 1995, 22(1): 39-42.
  YU Qitai. Displacement and decline characteristics of water flooding oilfield[J]. Petroleum Exploration and Development, 1995, 22(1): 39-42.
[8] 俞启泰. 广义水驱特征曲线公式的推导[J]. 新疆石油地质, 1996, 17(3): 260-265.
  YU Qitai. Derivation of generalized water flooding characteristic curve formula[J]. Xinjiang Petroleum Geology, 1996, 17(3): 260-265.
[9] 俞启泰. 水驱特征曲线研究(四)[J]. 新疆石油地质, 1997, 18(3): 247-258.
  YU Qitai. Study on water flooding characteristic curve(Ⅳ)[J]. Xinjiang Petroleum Geology, 1997, 18(3): 247-258.
[10] 俞启泰. 几种重要水驱特征曲线的油水渗流特征[J]. 石油学报, 1999, 20(1): 56-60.
  YU Qitai. Oil-water seepage characteristics of several important water flooding characteristic curves[J]. Acta Petrolei Sinica, 1999, 20(1): 56-60.
[11] 俞启泰. 水驱特征曲线研究(六)[J]. 新疆石油地质, 1999, 20(2): 65-69.
  YU Qitai. Study on water flooding characteristic curve(Ⅵ)[J]. Xinjiang Petroleum Geology, 1999, 20(2): 65-69.
[12] 俞启泰. 关于如何正确研究和应用水驱特征曲线: 兼答《油气藏工程实用方法》一书[J]. 石油勘探与开发, 2000, 27(5): 122-126.
  YU Qitai. How to study and apply water drive characteristic curve correctly: A reply to the book Practical Methods of Oil and Gas Reservoir Engineering[J]. Petroleum Exploration and Development, 2000, 27(5): 122-126.
[13] 陈元千. 水驱油田矿场经验分析式的推导及其应用(第一部分: 基本公式推导)[J]. 石油勘探与开发, 1981, 8(2): 59-67.
  CHEN Yuanqian. Derivation and application of empirical analysis formula for water flooding oilfield(Part Ⅰ: Basic formula derivation)[J]. Petroleum Exploration and Development, 1981, 8(2): 59-67.
[14] 陈元千. 水驱油田矿场经验分析式的推导及其应用(第二部分: 方法的应用)[J]. 石油勘探与开发, 1981, 8(3): 40-48.
  CHEN Yuanqian. Derivation and application of empirical analysis formula for water flooding oilfield(Part Ⅱ: Method application)[J]. Petroleum Exploration and Development, 1981, 8(2): 59-67.
[15] 陈元千. 水驱曲线关系式的推导[J]. 石油学报, 1985, 6(2): 69-78.
  CHEN Yuanqian. Derivation of water flooding curve relation[J]. Acta Petrolei Sinica, 1985, 6(2): 69-78.
[16] 陈元千. 用水驱曲线确定经济极限含水率的方法及其应用[J]. 新疆石油地质, 2010, 31(2): 158-162.
  CHEN Yuanqian. The method and application of determining economic limit water cut by water flooding curve[J]. Xinjiang Petroleum Geology, 2010, 31(2): 158-162.
[17] 张金庆. 一种简单实用的水驱特征曲线[J]. 石油勘探与开发, 1998, 25(3): 56-57.
  ZHANG Jinqing. A simple and practical water flooding characteristic curve[J]. Petroleum Exploration and Development, 1998, 25(3): 56-57.
[18] 聂延波, 吴晓慧, 乔霞, 等. 丁型水驱特征曲线在东河砂岩油藏开发指标预测中的应用[J]. 新疆石油地质, 2015, 36(2): 195-198.
  NIE Yanbo, WU Xiaohui, QIAO Xia, et al. Application of type-D water drive curve to development index forecast in Donghe sandstone reservoir in Hadeson Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2015, 36(2): 195-198.
[19] 侯爽, 王威. 低渗透砂岩油藏改进水驱曲线含水率预测方法[J]. 复杂油气藏, 2021, 14(1): 75-79.
  HOU Shuang, WANG Wei. Water-cut prediction method of improved waterflooding characteristic curve in low-permeability sandstone reservoirs[J]. Complex Hydrocarbon Reservoirs, 2021, 14(1): 75-79.
[20] 马旭, 陈小凡, 易虎. 缝洞型碳酸盐岩油藏注水替油井水驱特征曲线多样性与生产动态关系[J]. 油气藏评价与开发, 2015, 5(1): 34-38.
  MA Xu, CHEN Xiaofan, YI Hu. Relation between water-drive curve multiplicity and production performance for water injection-production well of fractured-vuggy carbonate oil reservoir[J]. Reservoir Evaluation and Development, 2015, 5(1): 34-38.
[21] 闫长辉, 王涛, 陈青, 等. 缝洞型碳酸盐岩油藏水驱曲线多样性与生产特征关系: 以塔河油田奥陶系碳酸盐岩油藏为例[J]. 物探化探计算技术, 2010, 32(3): 247-253.
  YAN Changhui, WANG Tao, CHEN Qing, et al. The relationships between water drive curve multiplicity and production characteristics of fractured-vuggy carbonate oil reservoir: An example of Ordovician carbonatite reservoir in Tahe oilfield[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(3): 247-253.
[22] 陈青, 易小燕, 闫长辉, 等. 缝洞型碳酸盐岩油藏水驱曲线特征: 以塔河油田奥陶系油藏为例[J]. 石油与天然气地质, 2010, 31(1): 33-37.
  CHEN Qing, YI Xiaoyan, YAN Changhui, et al. Water drive curves of fractured-vuggy carbonate rock reservoirs: Taking the Ordovician carbonate reservoirs in Tahe oilfield as an example[J]. Oil & Gas Geology, 2010, 31(1): 33-37.
[23] 俞启泰, 赵明. 水驱砂岩油田含水变化规律与采收率多因素分析[J]. 石油勘探与开发, 1992, 19(3): 63-68.
  YU Qitai, ZHAO Ming. Multi-factor analysis of water cut variation and recovery efficiency in water-driven sandstone oil fields[J]. Petroleum Exploration and Development, 1992, 19(3): 63-68.
[24] 邹存友, 王国辉. 大庆油田外围低渗透砂岩油藏水驱曲线特征[J]. 新疆石油地质, 2011, 32(1): 49-50.
  ZOU Cunyou, WANG Guohui. Features of water-drive curves of low-permeability sandstone reservoirs in Daqing peripheral oilfields[J]. Xinjiang Petroleum Geology, 2011, 32(1): 49-50.
[25] 李传亮, 王凤兰, 杜庆龙, 等. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
  LI Chuanliang, WANG Fenglan, DU Qinglong, et al. Water displacement rules of sandstone reservoirs at extra-high water-cut stage[J]. Lithologic Reservoirs, 2021, 33(5): 163-171.
[26] 孙常伟, 程佳, 常阳. 海相砂岩油藏张型广适水驱曲线预测修正应用[J]. 石油化工应用, 2022, 41(2): 23-29.
  SUN Changwei, CHENG Jia, CHANG Yang, et al. Marine strong edge and bottom water sandstone reservoir water drive curve prediction correction application[J]. Petrochemical Industry Application, 2022, 41(2): 23-29.
[27] BUCKLEY S E, LEVERETT M C. Mechanism of fluid displacement in sands[J]. Transactions of the AIME, 1942, 146(1): 107-116.
[28] 窦宏恩, 张虎俊, 沈思博. 对水驱特征曲线的正确理解与使用[J]. 石油勘探与开发, 2019, 46(4): 755-762.
  DOU Hongen, ZHANG Hujun, SHEN Sibo. Correct understanding and application of waterflooding characteristic curve[J]. Petroleum Exploration and Development, 2019, 46(4): 755-762.
[29] 张虎俊. 预测可采储量新模型的推导及应用[J]. 试采技术, 1995, 16(1): 38-42.
  ZHANG Hujun. Derivation and application of a new model for predicting recoverable reserves[J]. Well Testing and Production Technology, 1995, 16(1): 38-42.
[30] 俞启泰. 水驱特征曲线研究(一)[J]. 新疆石油地质, 1996, 17(4): 364-369.
  YU Qitai. Study on water flooding characteristic curve(Ⅰ)[J]. Xinjiang Petroleum Geology, 1996, 17(4): 364-369.
[31] 林志芳, 俞启泰, 李文兴. 水驱特征曲线计算油田可采储量方法[J]. 石油勘探与开发, 1990, 16(6): 64-71.
  LIN Zhifang, YU Qitai, LI Wenxing. Method for calculating recoverable reserves of oil field by water flooding characteristic curve[J]. Petroleum Exploration and Development, 1990, 16(6): 64-71.
[32] 吕心瑞, 孙建芳, 邬兴威, 等. 缝洞型碳酸盐岩油藏储层结构表征方法: 以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质, 2021, 42(3): 728-737.
  LYU Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: A case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728-737.
[33] 袁士宝, 刘文强, 蒋海岩, 等. 基于储层特性的碳酸盐岩缝洞型油藏开发方式[J]. 油气地质与采收率, 2021, 28(1): 80-87.
  YUAN Shibao, LIU Wenqiang, JIANG Haiyan, et al. Investigation into development modes of fracture-cavity carbonate reservoirs based on reservoir characteristics[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 80-87.
文章导航

/