综合研究

层理对侏罗系油藏水力裂缝扩展形态影响研究

  • 袁丽娜 ,
  • 王广涛 ,
  • 王成旺 ,
  • 侯瑞 ,
  • 孙峰
展开
  • 1.中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580
    2.长庆油田油气工艺研究院,陕西 西安 710021
    3.长庆油田天然气评价项目部,甘肃 庆阳 745000
袁丽娜(1997—),女,硕士,工程师,主要从事地下多物理场耦合方向研究。地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东),邮政编码:266580。E-mail: 2522747402@qq.com
孙峰(1979—),男,博士,副教授,主要从事地下多物理场耦合、油气工程力学方向研究。地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东),邮政编码:266580。E-mail: upcsfeng@upc.edu.cn

收稿日期: 2023-08-14

  网络出版日期: 2024-12-10

基金资助

国家自然科学基金项目“深层页岩热流固耦合致裂机制的实验及数值模拟研究”(42274155);中央高校基本科研业务费专项资金项目“高温高压高应力环境下水力裂缝扩展力学机制研究”(23CX03008A)

Study on influence of bedding on hydraulic fracture propagation morphologies in Jurassic reservoirs

  • YUAN Lina ,
  • WANG Guangtao ,
  • WANG Chengwang ,
  • HOU Rui ,
  • SUN Feng
Expand
  • 1. College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China
    2. Research Institute of Oil and Gas Technology, Changqing Oilfield, Xi'an, Shaanxi 710021, China
    3. Natural Gas Evaluation Project Department, Changqing Oilfield, Qingyang, Gansu 745000, China

Received date: 2023-08-14

  Online published: 2024-12-10

摘要

鄂尔多斯盆地侏罗系层段埋深介于300~2 200 m,油藏中分布着大量的水平层理,导致压裂过程中裂缝形态和扩展方向变化复杂。通过室内巴西劈裂试验测试考虑层理影响的侏罗系层段岩心的抗拉性能,比较垂直层理面和平行层理面下试样的抗拉强度差异。基于测试数据,采用cohesive单元法建立可以表征多层理侏罗系油藏水力压裂的三维有限元模型,研究层理面强度和地应力差对水力裂缝形态及扩展路径的影响。结果表明:层理面强度和地应力差是影响水力裂缝发生转向的主要因素;高层理强度和高地应力差会降低层理面对水力裂缝的限制,增强水力裂缝纵向穿层能力;低层理强度和低应力差会导致层理面的开启,使裂缝由垂直方向转而向层理面扩展。研究结果可为侏罗系油藏压裂施工的优化设计提供指导。

本文引用格式

袁丽娜 , 王广涛 , 王成旺 , 侯瑞 , 孙峰 . 层理对侏罗系油藏水力裂缝扩展形态影响研究[J]. 油气藏评价与开发, 2024 , 14(6) : 908 -917 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.012

Abstract

The Jurassic formations of the Ordos Basin, with burial depths ranging from 300 to 2,200 m, exhibit numerous horizontal bedding planes within the reservoirs, leading to complex variations in fracture morphology and propagation direction during hydraulic fracturing. Laboratory Brazilian splitting tests were conducted to evaluate the tensile strength of core samples from Jurassic formations, considering the impact of bedding. The tensile strength differences between specimens perpendicular to and parallel to bedding planes were compared. Based on the experimental data, a three-dimensional finite element model using the cohesive element method was developed to characterize hydraulic fracturing in multilayered Jurassic reservoirs, focusing on the effects of bedding strength and in-situ stress differences on fracture morphology and propagation paths. The results indicated that bedding strength and stress differences were the primary factors influencing fracture deflection. High bedding strength and large stress differences reduced the restraining effect of bedding on fractures, enhancing their vertical penetration across layers. Conversely, low bedding strength and small stress differences led to the opening of bedding planes, causing fractures to deviate and propagate along bedding surfaces. These findings provide guidance for optimizing hydraulic fracturing operations in Jurassic reservoirs.

参考文献

[1] 付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 2021, 26(3): 19-40.
  FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.
[2] 赵俊峰, 刘池洋, 张东东, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长7段剖面及其油气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 233-245.
  ZHAO Junfeng, LIU Chiyang, ZHANG Dongdong, et al. Description and its hydrocarbon geological implications of outcrop sections of Triassic Chang-7 Member in southern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 233-245.
[3] 叶博, 梁晓伟, 李卫成, 等. 鄂尔多斯盆地陇东地区侏罗系油藏分布规律及成藏模式[J]. 新疆石油地质, 2014, 35(6): 659-663.
  YE Bo, LIANG Xiaowei, LI Weicheng, et al. Reservoir distribution and hydrocarbon accumulation pattern of Jurassic in Longdong area of Ordos Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 659-663.
[4] 邓秀芹, 程党性, 周新平, 等. 鄂尔多斯盆地下侏罗统地层水化学特征及成因分析[J]. 沉积学报, 2020, 38(5): 1099-1110.
  DENG Xiuqin, CHENG Dangxing, ZHOU Xinping, et al. Formation hydrochemical characteristics and genesis of the Lower Jurassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1099-1110.
[5] 陈曦, 肖玲, 王明瑜, 等. 鄂尔多斯盆地西南缘长8油层组物源与古沉积环境恢复: 来自岩石地球化学的证据[J]. 现代地质, 2023, 37(5): 1264-1281.
  CHEN Xi, XIAO Ling, WANG Mingyu, et al. Reconstruction of provenance and paleo-sedimentary environment of the Chang 8 oil layer in the southwestern margin of the Ordos Basin: Evidence from petrogeochemistry[J]. Geoscience, 2023, 37(5): 1264-1281.
[6] 景文平, 曹鹏福, 吴绍颖, 等. 鄂尔多斯盆地西部地区侏罗系油藏储层评价及分类研究[J]. 石油地质与工程, 2021, 35(6): 56-62.
  JING Wenping, CAO Pengfu, WU Shaoying, et al. Reservoir evaluation and its classification of Jurassic oil reservoir in western Ordos Basin[J]. Petroleum Geology and Engineering, 2021, 35(6): 56-62.
[7] 蒋代琴, 文志刚, 汤仁文, 等. 鄂尔多斯盆地吴起地区古地貌对侏罗系下部油藏形成和富集控制机制分析[J]. 地质力学学报, 2018, 24(5): 627-634.
  JIANG Daiqin, WEN Zhigang, TANG Renwen, et al. Analysis on the formation and enrichment control mechanism of the Lower Jurassic reservoirs by paleo-geomorphology of Wuqi area in the Ordos Basin[J]. Journal of Geomechanics, 2018, 24(5): 627-634.
[8] YUAN H, YIN S, DONG L, et al. Study on the restoration of the pre-Jurassic paleogeomorphology and its control on hydrocarbon distribution in western Ordos Basin[J]. Energy Geoscience, 2022, 3(4): 485-494.
[9] LIN Y B, QIN Y, MA D M, et al. In situ stress variation and coal reservoir permeability response of the Jurassic Yan'an formation in the southwestern Ordos basin, China: Its impact on coalbed methane development[J]. Geoenergy Science and Engineering, 2023, 222: 211444.
[10] 尹帅, 邬忠虎, 吴晓明, 等. 鄂尔多斯盆地陇东地区洪德区块侏罗系延安组油藏富集规律[J]. 石油与天然气地质, 2022, 43(5): 1167-1179.
  YIN Shuai, WU Zhonghu, WU Xiaoming, et al. Oil enrichment law of the Jurassic Yan’an Formation, Hongde block, Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1167-1179.
[11] 赵虹, 党犇, 党永潮, 等. 鄂尔多斯盆地安塞志丹地区侏罗系延安组下部组合沉积演化及其对油气的控制[J]. 西北大学学报(自然科学版), 2020, 50(3): 490-500.
  ZHAO Hong, DANG Ben, DANG Yongchao, et al. Depositional system and its evolution of the Lower Yan'an Formation Jurassic in Ansai district, Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2020, 50(3): 490-500.
[12] FISHER K, WARPINSKI N. Hydraulic-fracture-height growth: Real data[J]. SPE Production & Operations, 2012, 27(1): 8-19.
[13] WRIGHT C A, WEIJERS L, DAVIS E J, et al. Understanding hydraulic fracture growth: Tricky but not hopeless[C]// Paper SPE-56724-MS presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, October 1999.
[14] GAO J, HOU B, CHEN M, et al. Effects of rock strength and interfacial property on fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(suppl. 2): 4108-4114.
[15] TAN P, JIN Y, HOU B, et al. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding[J]. Journal of Geophysics and Engineering, 2018, 15(3): 696-706.
[16] 候梦如, 梁冰, 孙维吉, 等. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究[J]. 油气藏评价与开发, 2023, 13(1): 100-107.
  HOU Mengru, LIANG Bing, SUN Weiji, et al. Influence of mineral interface stiffness on fracture propagation law of shale hydraulic fracturing[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 100-107.
[17] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414.
  HOU Zhenkun, YANG Chunhe, WANG Lei, et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics, 2016, 37(2): 407-414.
[18] ZHOU D W, ZHANG G Q, WANG Y Y, et al. Experimental investigation on fracture propagation modes in supercritical carbon dioxide fracturing using acoustic emission monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 111-119.
[19] JIANG Y L, LIANG W G, CAI T T, et al. Fracture growth and acoustic emission response in natural coal-rock blocks with different stress, fracturing medium and injection rates[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111228.
[20] ZOU Y S, ZHANG S C, ZHOU T, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics and Rock Engineering, 2016, 49: 33-45.
[21] LU J, YIN G Z, ZHANG D M, et al. Mechanical properties and failure mode of sandstone specimen with a prefabricated borehole under true triaxial stress condition[J]. Geomechanics for Energy and the Environment, 2021, 25: 100207.
[22] HADDAD M, SEPEHRNOORI K. Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: stimulation controlling factors[J]. Journal of Unconventional Oil and Gas Resources, 2015, 9: 65-83.
[23] GUO J C, LUO B, LU C, et al. Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method[J]. Engineering Fracture Mechanics, 2017, 186: 195-207.
[24] 潘林华, 王海波, 贺甲元, 等. 浅层薄差油层水平缝多层同步压裂干扰数值模拟[J]. 东北石油大学学报, 2020, 44(6): 114-124.
  PAN Linhua, WANG Haibo, HE Jiayuan, et al. Numerical simulation of multi-layers horizontal simultaneous fracturing for the shallow, thin and poor reservoir[J]. Journal of Northeast Petroleum University, 2020, 44(6): 114-124.
[25] TANG J Z, WU K, ZUO L H, et al. Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations[J]. SPE Journal, 2019, 24(5): 2292-2307.
[26] XIE J, TANG J Z, YONG R, et al. A 3-D hydraulic fracture propagation model applied for shale gas reservoirs with multiple bedding planes[J]. Engineering Fracture Mechanics, 2020, 228: 106872.
[27] 李小刚, 何建冈, 杨兆中, 等. 基于离散元法的压裂裂缝特征研究[J]. 油气藏评价与开发, 2023, 13(3): 348-357.
  LI Xiaogang, HE Jiangang, YANG Zhaozhong, et al. Fracture characteristics based on discrete element method[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 348-357.
[28] ZOU Y S, MA X F, ZHANG S C, et al. Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations[J]. Rock Mechanics and Rock Engineering, 2016, 49: 3597-3614.
[29] ZHENG H, PU C S, SUN C. Study on the interaction between hydraulic fracture and natural fracture based on extended finite element method[J]. Engineering Fracture Mechanics, 2020, 230: 106981.
[30] SHI F, WANF X, LIU C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64-90.
[31] ISRM. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 1978, 15(3): 99-103.
[32] ZOU J P, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165.
[33] 彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28(10): 228-235.
  BIAO Fangjun, LIU He, ZHANG Shicheng, et al. A numerical study of parameter influences on horizontal hydraulic fracture[J]. Engineering Mechanics, 2011, 28(10): 228-235.
文章导航

/