油气藏评价与开发 >
2024 , Vol. 14 >Issue 6: 925 - 932
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2024.06.014
基于综合可压指数的煤层气水平井压裂分段参数优化
收稿日期: 2023-08-01
网络出版日期: 2024-12-10
基金资助
中国海油“十四五”重大科技项目“煤层气地质工程关键参数表征及‘甜点’区评价技术”(KJGG2022-1001);中国海油“十四五”规划重大项目“差异化大型压裂物模实验及可压性研究”(CCL2022RCPS0471RSN);中国海油“十四五”规划重大项目“柿庄区块煤层气水平井高效压裂优化研究及应用”(CCL2022RCPS0038ESN)
Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index
Received date: 2023-08-01
Online published: 2024-12-10
沁水盆地柿庄区块煤层具有割理发育、低渗、煤体结构软、非均质性强等特点,前期采用水平井分段压裂后单井产气量差异较大,且气井产能与压裂参数关系尚不清楚,导致区块煤层气开发经济效益较差,水平井分段压裂设计参数有待进一步优化。基于煤层脆性指数、地应力和储渗特征评价,建立了煤层综合可压指数评价模型;考虑水平井分段压裂应力阴影影响,绘制形成不同煤层结构的压裂应力阴影及裂缝干扰图版,明确了不同净压力、裂缝长度、裂缝间距和簇数对诱导应力的影响。根据煤层气开发经济性要求,考虑单井投资内部收益率(IRR)与日产气量关系,优化了煤层不同综合可压指数的水平井压裂位置和段数设计参数,建立了煤层气水平井高效压裂技术图版,有助于提高沁水盆地柿庄区块煤层气水平井分段压裂改造效果,助力煤层气勘探开发提质增效。
孔祥伟 , 谢昕 , 王存武 . 基于综合可压指数的煤层气水平井压裂分段参数优化[J]. 油气藏评价与开发, 2024 , 14(6) : 925 -932 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.014
The coal seams in the Shizhuang block of the Qinshui Basin are characterized by developed cleats, low permeability, soft coal structures, and strong heterogeneity. In earlier development stages, hydraulic segmented fracturing of horizontal wells resulted in significant variations in gas production per well, with unclear relationships between gas well productivity and fracturing parameters. This led to poor economic performance in coalbed methane(CBM) development, highlighting the need for optimization of horizontal well fracturing parameters. This study established a comprehensive fracability index(CFI) evaluation model based on coal seam brittleness, in-situ stress, and reservoir-seepage characteristics. Considering the impact of stress shadows during horizontal well fracturing, stress shadow and fracture interference charts were generated for different coal seam structures, clarifying the effects of net pressure, fracture length, spacing, and cluster number on induced stress. Based on the economic requirements for CBM development, the fracturing positions and segment design parameters of horizontal wells with different CFI values were optimized by considering the relationship between the internal rate of return (IRR) of single-well investment and daily gas production. A high-efficiency fracturing technology chart for horizontal wells was developed, aimed at improving the fracturing effectiveness in the Shizhuang block of Qinshui Basin and enhancing the quality and efficiency of CBM exploration and development.
[1] | 庚勐, 陈浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6): 64-68. |
GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology, 2018, 46(6): 64-68. | |
[2] | 徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215. |
XU Fengyin, XIAO Zhihua, CHEN Dong, et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology, 2019, 47(10): 205-215. | |
[3] | 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 2019, 46(3): 433-442. |
ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 433-442. | |
[4] | 何发岐, 董昭雄. 深部煤层气资源开发潜力: 以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: A case study in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285. | |
[5] | 周德华, 陈刚, 陈贞龙, 等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(6): 43-51. |
ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(6): 43-51. | |
[6] | 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917. |
LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917. | |
[7] | 赵武鹏, 刘春春, 申兴伟, 等. 郑庄区块煤层气低产井增产技术研究[J]. 石油钻采工艺, 2017, 39(4): 491-494. |
ZHAO Wupeng, LIU Chunchun, SHEN Xingwei, et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang Block[J]. Oil Drilling & Production Technology, 2017, 39(4): 491-494. | |
[8] | 吴聿元, 陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发, 2020, 10(4): 1-11. |
WU Yuyuan, CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11. | |
[9] | 杜洋, 倪杰, 雷炜, 等. 威荣深层页岩气井油管最优参数设计研究[J]. 油气藏评价与开发, 2022, 12(3): 526-533. |
DU Yang, NI Jie, LEI Wei, et al. Optimum time of tubing installation in deep shale gas wells of Weirong[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 526-533. | |
[10] | 杨长鑫, 杨兆中, 李小刚, 等. 中国煤层气地面井开采储层改造技术现状与展望[J]. 天然气工业, 2022, 42(6): 154-162. |
YANG Changxin, YANG Zhaozhong, LI Xiaogang, et al. Status and prospect of reservoir stimulation technologies for CBM surface well production in China[J]. Natural Gas Industry, 2022, 42(6): 154-162. | |
[11] | 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527. |
YUAN Junliang, DENG Jingen, Zhang Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527. | |
[12] | HU Y, GONZALEZ PERDOMO M E, WU K L, et al. New models of brittleness index for shale gas Reservoirs: weights of brittle minerals and rock mechanics parameters//Proceedings of SPE Asia Pacific Unconventional Resources Conference and Exhibition[C]// Paper SPE-177010-MS presented at the SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, November 2015. |
[13] | 孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法[J]. 石油学报, 2015, 36(1): 74-80. |
SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1): 74-80. | |
[14] | 刘叶轩, 刘向君, 丁乙, 等. 考虑隔层影响的页岩油储层可压性评价方法[J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
LIU Yexuan, LIU Xiangjun, DING Yi, et al. Evaluation method of fracability of shale oil reservoir considering influence of interlayer[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 74-82. | |
[15] | 唐晓明, 许松, 庄春喜, 等. 基于弹性波速径向变化的岩石脆裂性定量评价[J]. 石油勘探与开发, 2016, 43(3): 417-424. |
TANG Xiaoming, XU Song, ZHUANG Chunxi, et al. Quantitative evaluation of rock brittleness and fracability based on elastic-wave velocity variation around borehole[J]. Petroleum Exploration and Development, 2016, 43(3): 417-424. | |
[16] | 钱玉萍. 煤层可压性评价方法研究及应用[J]. 海洋石油, 2022, 42(1): 55-58. |
QIAN Yuping. Study and application of evaluation methods for the fracability in coal reservoirs[J]. Offshore Oil, 2022, 42(1): 55-58. | |
[17] | 王成旺, 甄怀宾, 陈高杰, 等. 大宁—吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质, 2022, 34(2): 1-5. |
WANG Chengwang, ZHEN Huaibin, CHEN Gaojie, et al. Assessment of coal No. 8 reservoir features and fracturability in Da’ning-Jixian Block deep part[J]. Coal Geology of China, 2022, 34(2): 1-5. | |
[18] | 穆林, 王丽丽. 致密低渗气藏压裂水平井数值模拟[J]. 石油钻采工艺, 2010, 32(增刊1): 127-129. |
MU Lin, WANG Lili. Numerical simulation of fractured horizontal well in tight low-permeability gas reservoir[J]. Oil Drilling & Production Technology, 2010, 32(Suppl. 1): 127-129. | |
[19] | 张小涛, 吴建发, 冯曦, 等. 页岩气藏水平井分段压裂渗流特征数值模拟[J]. 天然气工业, 2013, 33(3): 47-52. |
ZHANG Xiao, WU Jianfa, FENG Xi, et al. Numerical simulation of seepage flow characteristics of multi-stage fracturing(MSF) in horizontal shale gas wells[J]. Natural Gas Industry, 2013, 33(3): 47-52. | |
[20] | 薛海飞, 朱光辉, 王伟, 等. 沁水盆地柿庄区块煤层气井压裂增产效果关键影响因素分析与实践[J]. 煤田地质与勘探, 2019, 47(4): 76-81. |
XUE Haifei, ZHU Guanghui, WANG Wei, et al. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area, Qinshui basin[J]. Coal Geology & Exploration, 2019, 47(4): 76-81. | |
[21] | 高向东, 孙昊, 王延斌, 等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术, 2022, 50(8): 140-150. |
GAO Xiangdong, SUN Hao, WANG Yanbin, et al. In-situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology, 2022, 50(8): 140-150. | |
[22] | 郭建宏, 张占松, 张超谟, 等. 基于灰色系统与测井方法的煤层气含量预测及应用[J]. 物探与化探, 2020, 44(5): 1190-1200. |
GUO Jianhong, ZHANG Zhansong, ZHANG Chaomo, et al. Prediction and application of coalbed methane content based on gray system and logging method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1190-1200. | |
[23] | 梁亚林, 原文涛. 测井预测煤层气含量及分布规律: 以山西省沁水煤田为例[J]. 物探与化探, 2018, 42(6): 1144-1149. |
LIANG Yalin, YUAN Wentao. The prediction of the content and distribution of coalbed gas : a case study in the Qinshui coalfield based on logging[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1144-1149. | |
[24] | 郑贵强, 杨德方, 李小明, 等. 沁水盆地柿庄北区块深部煤储层特征测井评价研究[J]. 煤炭科学技术, 2019, 47(6): 178-186. |
ZHENG Guiqiang, YANG Defang, LI Xiaoming, et al. Study on features and logging evaluation of deep coal reservoir in North Shizhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2019, 47(6): 178-186. | |
[25] | TAN Y L, PAN Z J, LIU J S, et al. Experimental study of permeability and its anisotropy for shale fracture supported with proppant[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 250-264. |
[26] | 付佳乐, 李波波, 高政, 等. 不同孔隙压力和围压下煤岩渗透及力学特性试验研究[J]. 煤炭科学技术, 2023, 51(8): 150-159. |
FU Jiale, LI Bobo, GAO Zheng, et al. Experimental study on permeability and mechanical properties of coal under different pore pressure and confining pressure[J]. Coal Science and Technology, 2023, 51(8): 150-159. |
/
〈 | 〉 |