综合研究

贵州六盘水煤田构造煤储层特征与煤层气勘探开发方向

  • 邱文慈 ,
  • 桑树勋 ,
  • 郭志军 ,
  • 韩思杰 ,
  • 周效志 ,
  • 周培明 ,
  • 吴章利 ,
  • 桑国蕴 ,
  • 张斌斌 ,
  • 高为
展开
  • 1.中国矿业大学资源与地球科学学院,江苏 徐州 221116
    2.中国矿业大学江苏省煤基温室气体减排与资源化利用重点实验室,江苏 徐州 221008
    3.中国矿业大学碳中和研究院,江苏 徐州 221008
    4.复杂构造区非常规油气勘探开发重点实验室,贵州 贵阳 550081
    5.贵州省油气勘查开发工程研究院,贵州 贵阳 550081
    6.贵州省煤层气页岩气工程技术研究中心,贵州 贵阳 550081
邱文慈(1999—)女,硕士研究生,主要研究方向为煤层气地质、CO2封存等。地址:江苏省徐州市泉山区中国矿业大学,邮政编码:221116。E-mail: 1511788501@qq.com
桑树勋(1967—),男,博士,教授,博士生导师,主要从事碳中和地质技术、煤系非常规天然气勘探开发方面的工作。地址:江苏省徐州市泉山区中国矿业大学,邮政编码:221116。E-mail: shuxunsang@163.com

收稿日期: 2023-12-18

  网络出版日期: 2024-12-10

基金资助

国家自然科学基金项目“煤系气高效勘探开发的岩石力学地层理论方法体系研究”(42030810);江苏省创新支撑计划国际科技合作“一带一路”创新合作项目“非常规天然气资源潜力与勘探开发技术模式的合作研究”(BZ2022015);贵州省地质勘查基金项目“毕节试验区煤层气资源调查评价与开发技术研究”(52000021MGQSE7S7K6PRP);安徽省公益性地质工作项目“两准矿区重点区域煤层气储层可改造性调查评价”(2023-sj-13)

Characteristics of stratified coal reservoirs in Liupanshui coalfield of Guizhou Province and exploration and development direction of coalbed methane

  • QIU Wenci ,
  • SANG Shuxun ,
  • GUO Zhijun ,
  • HAN Sijie ,
  • ZHOU Xiaozhi ,
  • ZHOU Peiming ,
  • WU Zhangli ,
  • SANG Guoyun ,
  • ZHANG Binbin ,
  • GAO Wei
Expand
  • 1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
    2. Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
    3. Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
    4. Key Laboratory of Unconventional Oil and Gas Exploration and Development in Complex Structural Areas, Guiyang, Guizhou 550081, China
    5. Guizhou Engineering Research Institute of Oil & Gas Exploration and Development, Guiyang, Guizhou 550081, China
    6. Guizhou Provincial Engineering and Technology Research Center of Coalbed Methane and Shale Gas, Guiyang, Guizhou 550081, China

Received date: 2023-12-18

  Online published: 2024-12-10

摘要

贵州省煤层气资源丰富,但构造煤的发育制约了煤层气增储上产,通过研究贵州构造煤储层特征,在此基础上提出了可适配的勘探开发技术,为提高贵州构造煤储层资源的安全、高效开发技术水平提供了理论基础。在煤层力学性质非均质性和构造应力场不均匀分布的控制下,构造煤分层现象更为普遍。以六盘水煤田大河边向斜11号煤层为例,开展等温吸附、压汞、低温液氮、低温CO2吸附实验,研究了各分层储层物性特征,讨论了厚煤层构造煤分层形成机制及煤层气富集模式,比较了复杂煤体结构厚煤层煤层气适配性勘探开发技术及其适用性。研究表明:①大河边向斜11号煤层平均厚度为4.48 m,厚煤层的形成是盆地沉降速率和物源沉积补偿平衡的结果,在后期挤压和推覆构造作用下,11号煤层出现挤压、破碎甚至层间滑动,构造煤分层开始发育,中部分层应力集中且煤岩力学性质偏弱;②11号煤层在垂向上发育“三明治”特征,自上而下分别为原生结构煤、糜棱煤和碎裂煤;③中部煤储层的微孔比例最高,吸附能力最强,最大吸附量的兰氏体积呈现出中分层(16.55 cm3/g)>下分层(14.69 cm3/g)>上分层(13.96 cm3/g)的规律;④研究区11号煤层形成岩性-断层-水力封堵型气藏,针对煤体结构分层特征对比分析了3种不同的开发技术路线,提出适用性最强的水平井构造煤软分层造穴卸压煤层气开发方向。

本文引用格式

邱文慈 , 桑树勋 , 郭志军 , 韩思杰 , 周效志 , 周培明 , 吴章利 , 桑国蕴 , 张斌斌 , 高为 . 贵州六盘水煤田构造煤储层特征与煤层气勘探开发方向[J]. 油气藏评价与开发, 2024 , 14(6) : 959 -966 . DOI: 10.13809/j.cnki.cn32-1825/te.2024.06.018

Abstract

Guizhou Province is rich in coalbed methane(CBM) resources; however, the development of tectonic coal constrains the increase of reserves and production. By studying the reservoir characteristics of tectonic coal in Guizhou, adaptable exploration and development technologies are proposed, providing a theoretical basis for the safe and efficient development of tectonic coal reservoirs in the province. Under the control of the heterogeneous mechanical properties of coal seams and the uneven distribution of tectonic stress fields, the phenomenon of stratification in tectonic coal is more prevalent. Taking the No. 11 coal seam in the Dahebian syncline of the Liupanshui Coalfield as an example, isothermal adsorption, mercury intrusion, low-temperature liquid nitrogen adsorption, and low-temperature CO2 adsorption experiments were conducted to study the physical properties of each stratified reservoir. The formation mechanism of tectonic coal stratification in thick coal seams and the CBM enrichment pattern were discussed. The adaptability and applicability of exploration and development technologies for CBM in thick coal seams with complex coal structures were compared. The results showed that:1) The average thickness of the No. 11 coal seam in the Dahebian syncline was 4.48 m, and the formation of thick coal seams was the result of a balance between basin subsidence rates and sedimentary supply. Under subsequent compressional and thrust tectonic activities, the No. 11 coal seam underwent compression, fracturing, and even interlayer sliding, leading to the development of stratification in tectonic coal. Stress was concentrated in the middle stratification, where the mechanical properties of the coal were weaker. 2) The No. 11 coal seam exhibited a “sandwich” structure in the vertical direction, consisting of primary structural coal on top, mylonitic coal in the middle, and fragmented coal at the bottom. 3) The middle coal reservoir had the highest proportion of micropores and the strongest adsorption capacity. The Langmuir volume of maximum adsorption followed the trend: middle stratification(16.55 cm³/g) > lower stratification(14.69 cm³/g) > upper stratification(13.96 cm³/g). 4) The No. 11 coal seam in the study area formed a lithology-fault-hydraulic seal gas reservoir. Based on the stratified characteristics of the coal structure, three different development technology routes were compared, and the most applicable direction for CBM development was identified as constructing cavities in the soft stratification of tectonic coal using horizontal wells to achieve pressure relief and CBM extraction.

参考文献

[1] 高弟, 秦勇, 易同生. 论贵州煤层气地质特点与勘探开发战略[J]. 中国煤炭地质, 2009, 21(3): 20-23.
  GAO Di, QIN Yong, YI Tongsheng. Geological condition, exploration and exploitation strategy of coal-bed methane resources in Guizhou, China[J]. Coal Geology of China, 2009, 21(3): 20-23.
[2] 刘树根, 冉波, 叶玥豪, 等. 贵州习水骑龙村奥陶系五峰组—志留系龙马溪组剖面[J]. 油气藏评价与开发, 2022, 12(1): 10-28.
  LIU Shugen, RAN Bo, YE Yuehao, et al. Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 10-28.
[3] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(1): 180-198.
  CHENG Yuanping, LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society, 2021, 46(1): 180-198.
[4] 桑树勋, 周效志, 刘世奇, 等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报, 2020, 45(7): 2531-2543.
  SANG Shuxun, ZHOU Xiaozhi, LIU Shiqi, et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society, 2020, 45(7): 2531-2543.
[5] 徐宏杰, 桑树勋, 杨景芬, 等. 贵州省煤层气勘探开发现状与展望[J]. 煤炭科学技术, 2016, 44(2): 1-7.
  XU Hongjie, SANG Shuxun, YANG Jingfen, et al. Status and expectation on coalbed methane exploration and development in Guizhou Province[J]. Coal Science and Technology, 2016, 44(2): 1-7.
[6] 周效志, 桑树勋, 易同生, 等. 煤层气合层开发上部产层暴露的伤害机理[J]. 天然气工业, 2016, 36(6): 52-59.
  ZHOU Xiaozhi, SANG Shuxun, YI Tongsheng, et al. Damage mechanism of upper exposed producing layers during CBM multi-coal seam development[J]. Natural Gas Industry, 2016, 36(6): 52-59.
[7] 韩保山. 构造煤煤层气压裂方式及机制探讨[J]. 煤矿安全, 2019, 50(7): 211-214.
  HAN Baoshan. Discussion on fracturing mode and mechanism of coalbed methane in tectonic coal[J]. Coal Mine Safety, 2019, 50(7): 211-214.
[8] 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报, 2018, 43(1): 150-159.
  ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159.
[9] 孔祥喜, 唐永志, 李平, 等. 淮南矿区松软低透煤层煤层气开发利用技术与思考[J]. 煤炭科学技术, 2022, 50(12): 26-35.
  KONG Xiangxi, TANG Yongzhi, LI Ping, et al. Thinking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology, 2022, 50(12): 26-35.
[10] 郑超, 马东民, 夏玉成, 等. 韩城矿区煤层气富集的构造控制与开发模式研究[J]. 煤炭工程, 2021, 53(10): 89-94.
  KONG Xiangxi, TANG Yongzhi, LI Ping, et al. Development mode and tectonic control of CBM enrichment in Hancheng Mining Area[J]. Coal Science and Technology, 2022, 50(12): 26-35.
[11] 许耀波, 郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报, 2019, 44(4): 1169-1177.
  XU Yaobo, GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society, 2019, 44(4): 1169-1177.
[12] 李雪娇, 陈帅, 甄怀宾, 等. 碎软煤层夹矸间接压裂开发煤层气技术研究[J]. 钻采工艺, 2022, 45(5): 69-74.
  LI Xuejiao, CHEN Shuai, ZHEN Huaibin, et al. Study on indirect fracturing technology for CBM development in the parting of broken soft coal seams[J]. Drilling & Production Technology, 2022, 45(5): 69-74.
[13] 桂宝林. 六盘水地区煤层气地质特征及富集高产控制因素[J]. 石油学报, 1999, 20(3): 39-45.
  GUI Baolin. Geological characteristics and enrichment controlling factors of coalbed methane in Liupanshui region[J]. Acta Petrolei Sinica, 1999, 20(3): 39-45.
[14] 王树才, 陈锦海, 覃洪, 等. 贵州水城二塘-大河边晚二叠世煤系上部沉积相与厚煤层分布规律[C]// 中国地质科学院宜昌地质矿产研究所文集(15): 地质出版社, 1990, 30.
  WANG Shucai, CHEN Jinhai, QIN Hong, et al. Distribution pattern of thick coal seams and sedimentary facies of the upper part of late Permian coal measures in Ertang Dahebian, Shuicheng area, Guizhou province[C]// Proceedings of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences(15): Geological Publishing House, 1990, 30.
[15] 金军, 杨兆彪, 秦勇, 等. 贵州省煤层气开发进展、潜力及前景[J]. 煤炭学报, 2022, 47(11): 4113-4126.
  JIN Jun, YANG Zhaobiao, QIN Yong, et al. Progress, potential and prospects of CBM development in Guizhou Province[J]. Journal of China Coal Society, 2022, 47(11): 4113-4126.
[16] 曹明亮, 康永尚, 邓泽, 等. 煤阶和构造应力强度对煤岩力学性质的影响作用[J]. 煤炭科学技术, 2019, 47(12): 45-55.
  CAO Mingliang, KANG Yongshang, DENG Ze, et al. Influence of coal rank and tectonic stress intensity on mechanical properties of coal rock[J]. Coal Science and Technology, 2019, 47(12): 45-55.
[17] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1984, 54(4): 603-619.
[18] 降文萍, 张群, 姜在炳, 等. 构造煤孔隙结构对煤层气产气特征的影响[J]. 天然气地球科学, 2016, 27(1): 173-179.
  JIANG Wenping, ZHANG Qun, JIANG Zaibing, et al. Effect on CBM drainage characteristics of pore structure of tectonic coal[J]. Natural Gas Geoscience, 2016, 27(1): 173-179.
[19] LI Y, TANG D Z, WU P, et al. Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China[J]. Journal of Natural Gas Science & Engineering, 2016, 36: 314-327.
[20] 秦勇, 叶建平, 林大扬, 等. 煤储层厚度与其渗透性及含气性关系初步探讨[J]. 煤田地质与勘探, 2000, 48(1): 24-27.
  QIN Yong, YE Jianping, LIN Dayang, et al. Relationship of coal reservoir thickness and its permeability and gas bearing property[J]. Coal Geology & Exploration, 2000, 48(1): 24-27.
[21] 高为, 韩忠勤, 金军, 等. 六盘水煤田煤层气赋存特征及有利区评价[J]. 煤田地质与勘探, 2018, 46(5): 81-89.
  GAO Wei, HAN Zhongqin, JIN Jun, et al. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. Coal Geology & Exploration, 2018, 46(5): 81-89.
[22] 王佟, 王庆伟, 傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探, 2014, 42(1): 24-27.
  WANG Tong, WANG Qingwei, FU Xuehai. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration, 2014, 42(1): 24-27.
[23] 鲍齐文. 大河边向斜煤层气系统及其地质控制[D]. 徐州: 中国矿业大学, 2019.
  BAO Qiwen. Coalbed methane system and its geological controls in Dahebian Syncline, Guizhou, China[D]. Xuzhou: China University of Mining and Technology, 2019.
[24] 许浩, 汤达祯, 赵俊龙, 等. 水力封堵型煤层气藏类型及地质意义[J]. 中国煤层气, 2011, 8(2): 32-34.
  XU Hao, TANG Dazhen, ZHAO Junlong, et al. Types of hydraulically sealed CBM reservoir and their geologic significance[J]. China Coalbed Methane, 2011, 8(2): 32-34.
[25] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
  ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1): 86-94.
[26] 李林, 张培河, 武英俊, 等. 沁北盆地太原组煤层地面垂直井抽采储层改造技术研究[J]. 煤炭技术, 2023, 42(6): 88-91.
  LI Lin, ZHANG Peihe, WU Yingjun, et al. Research on surface vertical well drainage reservoir transformation technology of Taiyuan Formation coal seam in northern Qinshui Basin[J]. Coal Technology, 2023, 42(6): 88-91.
[27] 桑树勋, 皇凡生, 单衍胜, 等. 碎软低渗煤储层强化与煤层气地面开发技术进展[J]. 煤炭科学技术, 2024, 52(1): 1-19.
  SANG Shuxun, HUANG Fansheng, SHAN Yansheng, et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology, 2024, 52(1): 1-19.
[28] 牟全斌. 我国煤层造穴增渗技术研究现状与进展[J]. 煤矿机械, 2023, 44(2): 65-68.
  MOU Quanbin. Research status and progress of cavitation permeability-increasing technology for coal seam in China[J]. Coal Mine Machinery, 2023, 44(2): 65-68.
文章导航

/