专家论坛

中国石化探区和邻区油页岩原位开采选区评价

  • 郭旭升 ,
  • 李王鹏 ,
  • 申宝剑 ,
  • 胡宗全 ,
  • 赵培荣 ,
  • 黎茂稳 ,
  • 高波 ,
  • 冯动军 ,
  • 刘雅利 ,
  • 武晓玲 ,
  • 苏建政
展开
  • 1.页岩油气富集机理与高效开发全国重点实验室,北京 102206
    2.中国石化页岩油气勘探开发重点实验室,北京 102206
    3.中国石化石油勘探开发研究院,北京 102206
郭旭升(1965—),男,博士,中国工程院院士,教授级高级工程师,主要从事油气勘探研究与生产管理等相关工作。地址:北京市昌平区百沙路197号中国石化科学技术研究中心,邮政编码:102206。E-mail:guoxs.syky@sinopec.com
李王鹏(1986—),男,博士,副研究员,主要从事石油地质勘探研究等相关工作。地址:北京市昌平区百沙路197号中国石化科学技术研究中心,邮政编码:102206。E-mail:liwp.syky@sinopec.com

收稿日期: 2024-07-24

  网络出版日期: 2025-01-26

基金资助

中国石化科技部项目“松辽盆地北部油气勘探潜力评价与突破目标优选”(P23092);中国石化科技部项目“油页岩原位转化开采关键技术”(P20066)

Selection evaluation of in-situ exploitation of oil shale in Sinopec exploration areas and adjacent areas

  • GUO Xusheng ,
  • LI Wangpeng ,
  • SHEN Baojian ,
  • HU Zongquan ,
  • ZHAO Peirong ,
  • LI Maowen ,
  • GAO Bo ,
  • FENG Dongjun ,
  • LIU Yali ,
  • WU Xiaoling ,
  • SU Jianzheng
Expand
  • 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development, Beijing 102206, China;
    2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 102206, China;
    3. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China

Received date: 2024-07-24

  Online published: 2025-01-26

摘要

中国石化探区油页岩资源丰富,是国家重要的战略储备资源和补充能源。加快油页岩勘探开发对改善中国能源结构和保障国家能源安全具有重要意义。为了实现油页岩规模勘探与效益开发,通过调研梳理国内外成功开展油页岩原位开采现场试验的技术,分析试验区特征、地质和工程适应性、选区选层要求等认为:国外壳牌公司电加热法技术、中国吉林众诚公司的原位压裂化学干馏技术和吉林大学的局部化学反应法原位裂解技术实施了现场先导试验并获得成功,但中国两项技术的成熟度和可行性有待进一步研究论证,且现有的原位开采技术对深部油页岩的适应性均未得到验证。通过开展油页岩原位开采技术特点、地质资源条件、开采工程条件梳理分析,针对约束中国油页岩原位开采的关键因素,结合加热方式确定了4项地质参数、6项工程参数和分级评价界限,并根据约束油页岩原位开采利用的程度确定各参数的权重,建立了油页岩原位开采有利区地质-工程双因素评价模型,优选出15个中国石化探区和邻区油页岩Ⅰ类有利区。对选出的有利区进一步分析其顶底板、断裂、可动水等关键因素的影响,并综合评价优选出4个试验目标区,分别为:鄂尔多斯盆地南缘旬邑区块、博格达山北麓南缘上黄山街含矿区、茂名盆地电白含矿区、抚顺盆地抚顺含矿区。

本文引用格式

郭旭升 , 李王鹏 , 申宝剑 , 胡宗全 , 赵培荣 , 黎茂稳 , 高波 , 冯动军 , 刘雅利 , 武晓玲 , 苏建政 . 中国石化探区和邻区油页岩原位开采选区评价[J]. 油气藏评价与开发, 2025 , 15(1) : 1 -10 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.01.001

Abstract

Oil shale in the Sinopec exploration areas is abundant and serves as an important strategic reserve and supplementary energy source for the country. Accelerating the exploration and development of oil shale is crucial for improving China’s energy structure and ensuring national energy security. To achieve large-scale exploration and cost-effective development of oil shale, the technologies of in-situ exploitation field tests successfully conducted both domestically and internationally were reviewed and summarized. Based on this review, the characteristics of test areas, geological and engineering adaptability, and selection layer requirements were analyzed. It was concluded that field pilot tests of Shell’s electric heating method, Jilin Zhongcheng Company’s in-situ fracturing chemical retorting technology, and Jilin University’s local chemical reaction-based in-situ pyrolysis technology have been successfully carried out. However, the maturity and feasibility of two technologies in China need to be further studied and validated, and the adaptability of existing in-situ exploitation technologies to deep oil shale remains unverified. The technical characteristics, geological resource conditions, and exploitation engineering conditions of in-situ oil shale exploitation were reviewed and analyzed. Based on the key factors restricting in-situ exploitation of oil shale in China and the heating method, four geological parameters, six engineering parameters, and classification evaluation limits were determined. Additionally, the weights of each parameter were assigned according to the degree of constraints on in-situ exploitation and utilization of oil shale. A two-factor evaluation model of geological and engineering for identifying favorable areas for in-situ oil shale exploitation was then established, leading to the selection of 15 Class Ⅰ favorable areas in Sinopec exploration areas and adjacent areas. The effects of key factors, including roof and floor, fractures, and movable water, on the selected favorable areas were further analyzed. Through comprehensive evaluation, four target areas were selected: the Xunyi mining area on the southern margin of the Ordos Basin, the Shanghuangshan Street mining area on the southern edge of the northern piedmont of the Bogda Mountains, the Dianbai mining area in the Maoming Basin, and the Fushun mining area in the Fushun Basin.

参考文献

[1] 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工程出版社, 2009.
  LIU Zhaojun, YANG Hulin, DONG Qingshui, et al. Oil shale of China[M]. Beijing: Petroleum Industry Press, 2009.
[2] 马跃, 李术元, 藤锦生, 等. 世界油页岩研究开发利用现状: 并记2015年美国油页岩会议[J]. 中外能源, 2016, 21(1): 21-26.
  MA Yue, LI Shuyuan, TENG Jinsheng, et al. Global oil shale research, development and utilization today: Oil shale symposium held in US in 2015[J]. Sino-Global Energy, 2016, 21(1): 21-26.
[3] 王清强, 马跃, 李术元, 等. 世界油页岩资源研究开发利用近况: 并记2016年国外两次油页岩国际会议[J]. 中外能源, 2017, 22(1): 23-29.
  WANG Qingqiang, MA Yue, LI Shuyuan, et al. Global oil shale research, development and utilization today: Two international oil shale symposiums held in 2016[J]. Sino-Global Energy, 2017, 22(1): 23-29.
[4] 马跃, 向卿谊, 丁康乐. 国内外油页岩工业发展现状[J]. 世界石油工业, 2024, 31(1): 16-25.
  MA Yue, XIANG Qingyi, DING Kangle. Development of oil shale at home and abroad[J]. World Petroleum Industry, 2024, 31(1): 16-25.
[5] 李隽, 汤达祯, 薛华庆, 等. 中国油页岩原位开采可行性初探[J]. 西南石油大学学报(自然科学版), 2014, 36(1): 58-64.
  LI Jun, TANG Dazhen, XUE Huaqing, et al. Discission of oil shale in-situ conversion process in China[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(1): 58-64.
[6] 钱家麟, 李术元. 油页岩干馏炼油工艺[M]. 北京: 中国石化出版社, 2014.
  QIAN Jialin, LI Shuyuan. Oil shale dry distillation refining process[M]. Beijing: China Petrochemical Press, 2014.
[7] 秦宏, 岳耀奎, 刘洪鹏, 等. 中国油页岩干馏技术现状与发展趋势[J]. 化工进展, 2015, 34(5): 1191-1198.
  QIN Hong, YUE Yaokui, LIU Hongpeng, et al. Current status and prospect of oil shale retorting technologies in China[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1191-1198.
[8] 汪友平, 王益维, 孟祥龙, 等. 美国油页岩原位开采技术与启示[J]. 石油钻采工艺, 2013, 35(6): 55-59.
  WANG Youping, WANG Yiwei, MENG Xianglong, et al. Enlightenment of American’s oil shale in-situ retorting technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 55-59.
[9] 刘德勋, 王红岩, 郑德温, 等. 世界油页岩原位开采技术进展[J]. 天然气工业, 2009, 29(5): 128-132.
  LIU Dexun, WANG Hongyan, ZHENG Dewen, et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry, 2009, 29(5): 128-132.
[10] 高诚, 苏建政, 王益维, 等. 油页岩原位开采数值模拟研究进展[J]. 石油钻采工艺, 2018, 40(3): 330-335.
  GAO Cheng, SU Jianzheng, WANG Yiwei, et al. Research progress of numerical simulation on oil shale in-situ production[J]. Oil Drilling & Production Technology, 2018, 40(3): 330-335.
[11] 贺君玲, 邓守伟, 陈文龙, 等. 利用测井技术评价松辽盆地南部油页岩[J]. 吉林大学学报(地球科学版), 2006, 36(6): 909-914.
  HE Junling, DENG Shouwei, CHEN Wenlong, et al. Evaluation of oil shale in the Southern Songliao Basin using logging techniques[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6): 909-914.
[12] 李丹梅, 汤达祯, 杨玉凤. 油页岩资源的研究、开发与利用进展[J]. 石油勘探与开发, 2006, 33(6): 657-661.
  LI Danmei, TANG Dazhen, YANG Yufeng, et al. Advances in oil-shale resources: development and utilization[J]. Petroleum Exploration and Development, 2006, 33(6): 657-661.
[13] 刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6): 869-876.
  LIU Zhaojun, DONG Qingshui, YE Songqing, et al. The situation of oil shale resources in China[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6): 869-876.
[14] 汪友平, 王益维, 孟祥龙, 等. 流体加热方式原位开采油页岩新思路[J]. 石油钻采工艺, 2014, 36(4): 71-74.
  WANG Youping, WANG Yiwei, MENG Xianglong, et al. A new idea for in-situ retorting oil shale by way of fluid heating technology[J]. Oil Drilling & Production Technology, 2014, 36(4): 71-74.
[15] KUTIMETS K, ELLMANN A, VALI E, et al. Underground oil shale mine surveying using handheld mobile laser scanners[J]. Oil Shale, 2021, 38(1): 42-64.
[16] LEE K J, MORIDIS G J, EHLIG-ECONOMIDES C A. Numerical simulation of diverse thermal in situ upgrading processes for the hydrocarbon production from kerogen in oil shale reservoirs[J]. Energy Exploration & Exploitation, 2017, 35(3): 315-337.
[17] MORATORI C C, LISBOA A. Mass and heat transfer to and from oil shale exposed to a gas stream at constant temperature[J]. Oil Shale, 2023, 40(2): 151-165.
[18] 管鑫, 李丹东, 韩冬云, 等. 国外油页岩资源开发利用进展[J]. 当代化工, 2015, 44(1): 80-82.
  GUAN Xin, LI Dandong, HAN Dongyun, et al. Development and utilization progress of foreign oil shale resources[J]. Contemporary Chemical Industry, 2015, 44(1): 80-82.
[19] 孙友宏, 邓孙华, 王洪艳. 国际油页岩开发技术与研究进展记第33届国际油页岩会议[J]. 吉林大学学报(地球科学), 2015, 45(4): 1052-1059.
  SUN Youhong, DENG Sunhua, WANG Hongyan. Advances in the exploitation technologies and researches of oil shale in the world: Report on 33rd oil shale symposium in US[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1052-1059.
[20] KANG Z Q, ZHAO Y S, YANG D. Review of oil shale in-situ conversion technology[J]. Applied Energy, 2020, 269: 115121.
[21] DYNI J R. Geology and resources of some world oil-shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.
[22] 侯吉礼, 马跃, 李术元, 等. 世界油页岩资源的开发利用现状[J]. 化工进展, 2015, 34(5): 1183-1190.
  HOU Jili, MA Yue, LI Shuyuan, et al. Development and utilization of oil shale worldwide[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1183-1190.
[23] 刘胜英, 王世辉, 陈春瑞, 等. 壳牌公司页岩油开采技术与进展[J]. 大庆石油学院学报, 2007, 31(3): 53-55.
  LIU Shengying, WANG Shihui, CHEN Chunrui, et al. Shell shale oil recovery technique and its progress[J]. Journal of Daqing Petroleum Institute, 2007, 31(3): 53-55.
[24] 马玲, 尹秀英, 孙昊, 等. 世界油页岩资源开发利用现状与发展前景[J]. 世界地质, 2012, 31(4): 772-777.
  MA Ling, YIN Xiuying, SUN Hao, et al. Present status of oil shale resource utilization in the world and its development prospects[J]. Global Geology, 2012, 31(4): 772-777.
[25] 王磊, 杨栋, 康志勤, 等. 注蒸汽原位开采油页岩热解温度确定及可行性分析[J]. 科学技术与工程, 2015, 15(29): 109-113.
  WANG Lei, YANG Dong, KANG Zhiqin, et al. Experimental study on feasibility and proper temperature in situ mining based overheat steam heating oil shale[J]. Science Technology and Engineering, 2015, 15(29): 109-113.
[26] GUO W R, YANG Q, DENG S, et al. Experimental study of the autothermic pyrolysis in-situ conversion process(ATS) for oil shale recovery[J]. Energy, 2022, 258: 124878.
[27] HAMBURG A, HARM M. Implications of the possible exit from oil shale for Estonian electricity sector[J]. Oil Shale, 2020, 37(3): 177-187.
[28] 车长波, 杨虎林, 刘招君, 等. 中国油页岩资源勘探开发前景[J]. 中国矿业, 2008, 17(9): 1-4.
  CHE Changbo, YANG Hulin, LIU Zhaojun, et al. Exploration and exploitation prospects of oil shale resources in China[J]. China Mining Magazine, 2008, 17(9): 1-4.
[29] 刘招君, 柳蓉. 中国油页岩特征及开发利用前景分析[J]. 地学前缘, 2005, 12(3): 315-323.
  LIU Zhaojun, LIU Rong. Oil shale resource state and evaluating system[J]. Earth Science Frontiers, 2005, 12(3): 315-323.
[30] 孙友宏, 郭威, 邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势[J]. 钻探工程, 2021, 48(1): 57-67.
  SUN Youhong, GUO Wei, DENG Sunhua. The status and development trend of in-situ conversion and drilling exploitation technology for oil shale[J]. Drilling Engineering, 2021, 48(1): 57-67.
[31] 陈会军, 刘昭君, 朱建伟, 等. 油页岩含矿区开发优选的指标体系和权重的确定[J]. 中国地质, 2009, 36(6): 1359-1365.
  CHEN Huijun, LIU Zhaojun, ZHU Jianwei, et al. The determination of the index system and weights for the development optimism of oil shale potential areas[J]. Geology in China, 2009, 36(6): 1359-1365.
[32] 董清水, 王立贤, 于文斌, 等. 油页岩资源评价关键参数及其求取方法[J]. 吉林大学学报(地球科学版), 2006, 36(6): 889-903.
  DONG Qingshui, WANG Lixian, YU Wenbin, et al. The key parameters of oil-shale resource appraisement and its evaluating methods[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6): 889-903.
[33] 刘招君, 孟庆涛, 柳蓉. 中国陆相油页岩特征及成因类型[J]. 古地理学报, 2009, 11(1): 105-114.
  LIU Zhaojun, MENG Qingtao, LIU Rong. Characteristics and genetic types of continental oil shales in China[J]. Journal of Palaeogeography, 2009, 11(1): 105-114.
[34] 赵文智, 胡素云, 侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发, 2018, 45(4): 537-545.
  ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration & Development, 2018, 45(4): 537-545.
[35] 钱家麟, 尹亮, 王剑秋, 等. 油页岩: 石油的补充能源[M]. 北京: 中国石化出版社, 2008.
  QIAN Jialin, YIN Liang, WANG Jianqiu, et al. Oil shale: A complementary energy source to oil[M]. Beijing: China Petrochemical Press, 2008.
[36] 丁敏. 鄂尔多斯盆地志丹地区三叠系延长组长7油页岩资源评价[D]. 西安: 西安石油大学, 2012.
  DING Min. Resource evaluation of oil shales of Triassic Chang 7 in Zhidan in the Ordos basin[D]. Xi’an: Xi’an Shiyou university, 2012.
[37] 马中豪, 陈清石, 史忠汪, 等. 鄂尔多斯盆地南缘延长组长7油页岩地球化学特征及其地质意义[J]. 地质通报, 2016, 35(9): 1550-1558.
  MA Zhonghao, CHEN Qingshi, SHI Zhongwang, et al. Geochemistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance[J]. Geological Bulletin of China, 2016, 35(9): 1550-1558.
[38] 李玉宏, 武富礼. 陕西省铜川—黄陵地区三叠系油页岩及伴生油气资源[M]. 北京: 地质出版社, 2014.
  LI Yuhong, WU Fuli. Triassic oil shale and associated hydrocarbon resources in Tongchuan-Huangling area, Shaanxi Province[M]. Beijing: Geological Publishing House, 2014.
[39] 李成博, 郭巍, 宋玉勤, 等. 新疆博格达山北麓油页岩成因类型及有利区预测[J]. 吉林大学学报(地球科学版), 2006, 36(6): 949-953.
  LI Chengbo, GUO Wei, SONG Yuqin, et al. The genetic type of the oil shale at the northern foot of Bogeda Mountain, Xinjiang and prediction for favorable areas[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6): 949-953.
文章导航

/