油气藏评价与开发 >
2025 , Vol. 15 >Issue 1: 124 - 130
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.01.016
夹层型陆相页岩油储层压裂裂缝扩展实验研究
收稿日期: 2024-06-05
网络出版日期: 2025-01-26
基金资助
国家自然科学基金项目“万米深井PDC钻头冲击破岩机理及提速方法研究”(52274005)
Experimental study on hydraulic fracture propagation in interbedded continental shale oil reservoirs
Received date: 2024-06-05
Online published: 2025-01-26
鄂尔多斯盆地延长组沉积了一套泥页岩及细粒砂质岩,具有丰富的页岩油资源,勘探开发评估资源量合计达十几亿吨。但页岩油储层可动性差、地层埋深浅,水平段层理、断缝、断层发育,裂缝扩展形态未知,体积压裂改造难度大。针对长7段井下储层获取的全直径致密砂泥岩岩心和页岩岩心,利用水泥包裹岩心方法开展真三轴室内压裂物模实验,获取水力裂缝形态,揭示弱应力场下页岩油储层水力裂缝扩展机理。实验发现,页岩油储层层状结构较密集,岩石颗粒之间胶结性较弱,压裂液容易沿着层理渗滤,在垂向应力与最小水平主应力之差小于2 MPa时,水力裂缝形态多为水平缝,压裂液主要沿层理或水平的天然裂缝渗滤;垂向应力与最小水平主应力之差增加到7 MPa时,会出现垂向穿层缝,形成局部台阶,最后被弱胶结层理面捕获后,沿层理渗滤延展。因此,压裂施工时,优选垂向应力与最小水平主应力差值较大的区域进行施工(井口位于山顶),有利于水力裂缝垂向延展,增加储层的体积压裂效果,提高页岩油产量和增大经济效益。
柴妮娜 , 李嘉瑞 , 张力文 , 王俊杰 , 刘亚鹏 , 朱伦 . 夹层型陆相页岩油储层压裂裂缝扩展实验研究[J]. 油气藏评价与开发, 2025 , 15(1) : 124 -130 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.01.016
The Yanchang Formation in the Ordos Basin has deposited a set of mudshales and fine-grained sandy rocks, rich in shale oil resources, with an estimated resource potential exceeding billions of tons. However, shale oil reservoirs exhibit poor mobility, shallow burial depths, the development of bedding, fractures, and faults in horizontal sections, and unknown fracture propagation patterns, making volumetric fracturing challenging. To address this, cement-encased cores of full-diameter tight sandstone-mudstone and shale from the sublayer in the seventh member of the Yanchang Formation (Chang 7) were used in actual triaxial hydraulic fracturing physical model experiments. These experiments revealed hydraulic fracture morphologies and the fracture propagation mechanism under weak stress fields in shale oil reservoirs. The experiments found that shale oil reservoirs had tight layered structures and weak bonding between rock grains, causing fracturing fluid to easily infiltrate along bedding planes. When the difference between vertical stress and minimum horizontal principal stress was less than 2 MPa, hydraulic fractures predominantly formed horizontal fractures, with the fluid primarily infiltrating along bedding planes or horizontal natural fractures. When this stress difference increased to 7 MPa, vertical cross-layer fractures appeared, forming localized steps that eventually became captured by weakly bonded bedding planes, propagating horizontally along the layers. For fracturing operations, regions with a larger difference between vertical stress and minimum horizontal principal stress, such as wellheads at hilltops, are preferred. This facilitates vertical fracture propagation, improves volumetric fracturing effectiveness in reservoirs, enhances shale oil production, and increases economic benefits.
[1] | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672. |
MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672. | |
[2] | 晁晖. 中国新能源发展战略研究[D]. 武汉: 武汉大学, 2015. |
CHAO Hui. The research of new energy source development strategy of China[D]. Wuhan: Wuhan University, 2015. | |
[3] | 王建, 郭秋麟, 赵晨蕾, 等. 中国主要盆地页岩油气资源潜力及发展前景[J]. 石油学报, 2023, 44(12): 2033-2044. |
WANG Jian, GUO Qiulin, ZHAO Chenlei, et al. Potentials and prospects of shale oil-gas resources in major basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2033-2044. | |
[4] | 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. |
YAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158. | |
[5] | 庞正炼, 陶士振, 张琴, 等. 鄂尔多斯盆地延长组7段夹层型页岩层系石油富集规律与主控因素[J]. 地学前缘, 2023, 30(4): 152-163. |
PANG Zhenglian, TAO Shizhen, ZHANG Qin, et al. Interbedded shale formation of the 7th member of the Yanchang Formation in the Ordos Basin: Petroleum accumulation patterns and controlling factors[J]. Earth Science Frontiers, 2023, 30(4): 152-163. | |
[6] | 白江. 鄂尔多斯盆地吴起地区延长组长6段储层特征研究[J]. 非常规油气, 2024, 11(2): 46-55. |
BAI Jiang. Reservoir characteristics of Chang6 Member of Yanchang Formation in Wuqi Area, Ordos Basin[J]. Unconventional Oil & Gas, 2024, 11(2): 46-55. | |
[7] | 彭紫燕, 谢斐, 王炜肖, 等. 页岩储层压裂裂缝形态描述及流动模拟方法研究现状[J]. 石油地质与工程, 2023, 37(5): 120-126. |
PENG Ziyan, XIE Fei, WANG Weixiao, et al. Research status of fracture morphology description and flow simulation method in shale reservoirs[J]. Petroleum Geology & Engineering, 2023, 37(5): 120-126. | |
[8] | 袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 13-24. |
YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 13-24. | |
[9] | 陈刚. 准噶尔盆地玛湖页岩油地质工程甜点地震一体化预测方法研究[D]. 北京: 中国石油大学(北京), 2023. |
CHEN Gang. Study on seismic integrated prediction method for geological-engineering sweet spot of Mahu shale oil in the Junggar Basin[D]. Beijing: China University of Petroleum(Beijing), 2023. | |
[10] | 崔壮, 侯冰, 付世豪, 等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田, 2022, 29(1): 111-117. |
CUI Zhuang, HOU Bing, FU Shihao, et al. Fracture cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Fields, 2022, 29(1): 111-117. | |
[11] | 考佳玮, 金衍, 付卫能, 等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1332-1339. |
KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1332-1339. | |
[12] | 盛广龙, 黄罗义, 赵辉, 等. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 84-96. |
SHENG Guanglong, HUANG Luoyi, ZHAO Hui, et al. Integrated simulation approach for fracture network propagation and gas flow in shale gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 84-96 | |
[13] | WARPINSKI N R. Investigation of the accuracy and reliability of in situ stress measurements using hydraulic fracturing in perforated cased holes[C]// Paper ARMA-83-0773 presented at the 24th U.S. Symposium on Rock Mechanics(USRMS), College Station, Texas, USA, June 1983. |
[14] | WARPINSKI N R, CLARK J A, SCHMIDT R A. Laboratory investigation on the effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers Journal, 1982, 22(3): 333-340. |
[15] | SIMONSON E R, ABOUSAYED A S, CLIFTON R J. Containment of massive hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 27-32. |
[16] | DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 33-41. |
[17] | 侯冰, 谭鹏, 陈勉, 等. 致密灰岩储层压裂裂缝扩展形态试验研究[J]. 岩土工程学报, 2016, 38(2): 219-225. |
HOU Bing, TAN Peng, CHEN Mian, et al. Experimental investigation on propagation geometry of hydraulic fracture in compact limestone reservoirs[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 219-225. | |
[18] | 常鑫, 程远方, 时贤, 等. 定向射孔体积压裂复杂裂缝扩展机理试验研究[J]. 科学技术与工程, 2015, 15(20): 116-122. |
CHANG Xin, CHENG Yuanfang, SHI Xian, et al. Experimental study of fracture initiation and propagation mechanisms by oriented perforation technology for SRV fracturing[J]. Science Technology and Engineering, 2015, 15(20): 116-122. | |
[19] | ZHAO Y S, MAO R B, LIU Z H, et al. Laboratory hydraulic fracturing test on largescale pre-cracked granite specimens[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286. |
[20] | TANG J Z, WU K, ZUO L H, et al. A coupled three-dimensional hydraulic fracture propagation model considering multiple bedding layers[C]// Paper URTEC-2901905-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[21] | 聂云丽. 页岩油气藏水力压裂裂缝的分布量化方法研究[D]. 武汉: 长江大学, 2023. |
NIE Yunli. Study on methods to determine the spatial distribution of fractures due to hydraulic fracturing in shale reservoirs[D]. Wuhan: Yangtze University, 2023. | |
[22] | 张皓宇. 陆相页岩油储层密切割体积压裂缝网演化机理研究[D]. 西安: 西安石油大学, 2023. |
ZHANG Haoyu. Study on the evolution mechanism of intensive cutting volumetric fracturing fracture network in continental shale oil reservoirs[D]. Xi'an: Xi'an Shiyou University, 2023. | |
[23] | 孔祥伟, 严仁田, 张思琦, 等. 真三轴大物模水力压裂裂缝起裂及扩展模拟实验[J]. 石油与天然气化工, 2023, 52(3): 97-102. |
KONG Xiangwei, YAN Rentian, ZHANG Siqi, et al. Simulation experiment of fracture initiation and propagation of hydraulic fracturing with true triaxial large physical model[J]. Chemical Engineering of Oil & Gas, 2023, 52(3): 97-102. | |
[24] | 乔玲茜, 王本强, 陈雨松, 等. 页岩气藏暂堵转向压裂裂缝扩展规律模拟[J]. 断块油气田, 2024, 31(2): 241-245. |
QIAO Lingxi, WANG Benqiang, CHEN Yusong, et al. Fracture propagation laws simulation of temporary plugging and diverting fracturing in shale gas reservoir[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 241-245. |
/
〈 |
|
〉 |