油气勘探

鄂尔多斯盆地东部深部煤系储层微观孔隙结构特征及启示

  • 马立涛 ,
  • 吴鹏 ,
  • 杨江浩 ,
  • 胡维强 ,
  • 黄英 ,
  • 刘成 ,
  • 牛艳伟 ,
  • 王志壮 ,
  • 任大忠
展开
  • 1.中海油能源发展股份有限公司工程技术分公司,天津 300452
    2.中海油能源发展股份有限公司非常规勘探开发重点实验室,天津 300452
    3.中联煤层气有限责任公司,北京 100011
    4.西安石油大学石油工程学院,陕西 西安 710065
马立涛(1985—),男,本科,高级工程师,主要从事非常规勘探开发实验研究工作。地址:天津市滨海新区海川路1581号,邮政编码:300459。E-mail:malt@cnooc.com.cn

收稿日期: 2024-05-15

  网络出版日期: 2025-04-01

基金资助

国家重点研发计划“页岩油藏CO2驱油协同碳封存关键理论与方法研究”(2023YFE0120770)

Microscopic pore structure characteristics and implications of deep coal measure reservoirs in eastern Ordos Basin

  • MA Litao ,
  • WU Peng ,
  • YANG Jianghao ,
  • HU Weiqiang ,
  • HUANG Ying ,
  • LIU Cheng ,
  • NIU Yanwei ,
  • WANG Zhizhuang ,
  • REN Dazhong
Expand
  • 1. CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China
    2. CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
    3. China United Coalbed Methane Co., Ltd., Beijing 100011, China
    4. College of Petroleum Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China

Received date: 2024-05-15

  Online published: 2025-04-01

摘要

鄂尔多斯盆地东部深部煤层气资源丰富,实现煤系气综合开发有助于提高资源动用率和单井产气量。为精准确定“甜点”层,利用有机地化、双束扫描电镜、高压压汞、低温N2吸附和低温CO2吸附等试验,对鄂尔多斯盆地东部山西组山2段煤系泥岩、煤岩和致密砂岩孔隙发育特征进行对比。结果表明黏土矿物含量是影响煤系地层泥岩和致密砂岩孔隙发育的主要影响因素。煤系储层微观孔隙结构差异较大,泥岩和致密砂岩主要发育介孔(2 ~ 50 nm)尺度的黏土矿物孔隙,二者的介孔比表面积和孔体积大致相等;煤岩发育大量微孔尺度(<2 nm)的有机质纳米孔隙,微孔比表面积远大于泥岩和致密砂岩的介孔比表面积;致密砂岩同时发育大量宏孔(>50 nm)尺度的黏土矿物孔隙和微裂缝,其连通性好于泥岩。致密砂岩能为游离气提供大量储集空间,泥岩和煤岩孔隙可以吸附大量天然气,砂泥煤组合和砂煤组合是煤系地层的主要勘探目标。

本文引用格式

马立涛 , 吴鹏 , 杨江浩 , 胡维强 , 黄英 , 刘成 , 牛艳伟 , 王志壮 , 任大忠 . 鄂尔多斯盆地东部深部煤系储层微观孔隙结构特征及启示[J]. 油气藏评价与开发, 2025 , 15(2) : 217 -226 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.02.006

Abstract

The deep coalbed methane resources in the eastern Ordos Basin are abundant, and comprehensive development of coal measure gas can enhance resource utilization and improve single well gas production. To precisely identify the “sweet spot layer,” this study compares the pore development characteristics of coal measure mudstone, coal rock and tight sandstone in the Shan 2 Section of the Shanxi Formation in the eastern Ordos Basin using organic geochemical analysis, dual-beam scanning electron microscopy, high-pressure mercury intrusion, low-temperature N2 adsorption, and low-temperature CO2 adsorption tests. The results show that clay mineral content is the main factor influencing pore development in coal measure mudstone and tight sandstone. The microscopic pore structure of coal measure reservoirs exhibits significant variations: mudstones and tight sandstones are characterized by mesopores (2-50 nm) within clay minerals, with their mesopore-specific surface area and pore volume being roughly equal. Coal develops abundant micropores (<2 nm) in organic nanopores, with a micropore-specific surface area far exceeding the mesopore-specific surface area of mudstone and tight sandstone. Tight sandstone also develops numerous macropores (>50 nm) in clay mineral pores and microfractures, exhibiting better connectivity than mudstone. Tight sandstone provides substantial storage space for free gas, while the pores in mudstone and coal can adsorb a large amount of natural gas. The sand-mud-coal and sand-coal combinations are the main exploration targets for coal measure strata.

参考文献

[1] 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917.
  LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system differences in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917.
[2] 蒋曙鸿, 师素珍, 赵康, 等. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报, 2023, 41(7): 106-113.
  JIANG Shuhong, SHI Suzhen, ZHAO Kang, et al. Prospect and development direction of deep coal and coalbed methane exploration[J]. Science and Technology Bulletin, 2023, 41(7): 106-113.
[3] 李勇, 吴鹏, 高计县, 等. 煤成气多层系富集机制与全含气系统模式: 以鄂尔多斯盆地东缘临兴区块为例. 天然气工业, 2022, 42(6): 52-64.
  LI Yong, WU Peng, GAO Jixian, et al. Multilayer coal-derived gas enrichment mechanism and whole gas bearing system model: A case study on the Linxing Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 52-64.
[4] 姚海鹏, 朱炎铭, 刘宇, 等. 鄂尔多斯盆地伊陕斜坡北部煤系非常规天然气成藏特征[J]. 科学技术与工程, 2018, 18(3): 160-167.
  YAO Haipeng, ZHU Yanming, LIU Yu, et al. The accumulation features of unconventional gas in coal-bearing strata in the north of yishan slope in Ordos basin[J]. Science Technology and Engineering, 2018, 18(3): 160-167.
[5] 李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 2020, 45(4): 1406-1418.
  LI Yong, WANG Yanbin, MENG Shangzhi, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 2020, 45(4): 1406-1418.
[6] 刘翰林, 邹才能, 尹帅, 等. 中国煤系气形成分布、甜点评价与展望[J]. 天然气工业, 2024, 44(10): 1-21.
  LIU Hanlin, ZOU Caineng, YIN Shuai, et al. Formation, distribution, sweet spot evaluation and prospect of coal-measure gas in China[J]. Natural Gas Industry, 2024, 44(10): 1-21.
[7] 张吉振, 李贤庆, 王元, 等. 海陆过渡相煤系页岩气成藏条件及储层特征: 以四川盆地南部龙潭组为例[J]. 煤炭学报, 2015, 40(8): 1871-1878.
  ZHANG Jizhen, LI Xianqing, WANG Yuan, et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin[J]. Journal of China Coal Society, 2015, 40(8): 1871-1878.
[8] 吴见, 汤达祯, 李松, 等. 鄂尔多斯盆地东缘煤储层孔隙结构特征差异及影响因素[J]. 煤田地质与勘探, 2017, 45(5): 58-65.
  WU Jian, TANG Dazhen, LI Song, et al. Characteristics and influence factors of pore structure of coal reservoirs in the eastern margin of Ordos basin[J]. Coal Geology & Exploration, 2017, 45(5): 58-65.
[9] 赵卿. 鄂尔多斯盆地东部山西组山2段致密砂岩储层特征研究[D]. 荆州: 长江大学, 2019.
  ZHAO Qin. Study on characteristics of tight sandstone reservoir of Shan-2 member of Shanxi formation in the eastern Ordos Basin[D]. Jingzhou: Yangtze University, 2019.
[10] 李曙光, 王成旺, 王红娜, 等. 大宁-吉县区块深层煤层气成藏特征及有利区评价 [J]. 煤田地质与勘探, 2022, 50(9): 59-67.
  LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9): 59-67.
[11] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances[J]. Journal of the American Chemical Society, 1951, 1(73): 193-380.
[12] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 2(60): 309-319.
[13] ZHOU S W, YAN G, XUE H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM[J]. Marine and Petroleum Geology, 2016, 73: 174-180.
[14] LIU K Q, OSTADHASSAN M, KONG L Y. Multifractal characteristics of Longmaxi Shale pore structures by N2 adsorption: A model comparison[J]. Journal of Petroleum Science and Engineering, 2018, 168: 330-341.
[15] ZHANG L, XIONG Y Q, LI Y, et al. DFT modeling of CO2 and Ar low-pressure adsorption for accurate nanopore structure characterization in organic-rich shales[J]. Fuel, 2017, 204: 1-11.
[16] DUBININ M M, ASTAKHOV V A. Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure[J]. Advances in Chemistry, 1971, 102: 69-85.
[17] 郗兆栋, 田忠斌, 唐书恒. 鄂尔多斯盆地东缘海陆过渡相页岩气储层孔隙特征及影响因素[J]. 中国地质, 2016, 43(06): 2059-2069.
  XI Zhaodong, TIAN Zhongbin, TANG Shuheng. Characteristics and main controlling factors of shale gas reservoirs in transitional facies on the eastern margin of Ordos Basin[J]. Geology in China, 2016, 43(6): 2059-2069.
[18] ZHOU S W, NING Y, WANG H Y, et al. Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories[J]. Advances in Geo-Energy Research, 2018, 2(3): 269-281.
[19] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 1-13.
  ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 1-13.
[20] 马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020(5): 1-15.
  MA Xinhua, XIE Jun, YONG Rui. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 1-15.
[21] 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020(3): 1-9.
  MA Xinhua, LI Xizhe, LIANG Feng, et al. Key control factors of well performance and development strategies optimization in the Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 1-9.
[22] 白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234.
  BAI Minggang, XIA Xianghua, ZHANG Cong, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe - 1 well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234.
[23] 程泽虎, 薛海涛, 李文浩, 等. 基于FE-SEM大视域拼接技术定量表征致密砂岩储集空间: 以泌阳凹陷核桃园组为例[J]. 中国石油勘探, 2018, 23(5): 79-87.
  CHENG Zehu, XUE Haitao, LI Wenhao, et al. Quantitative characterization of reservoir space of tight sandstones based on a large-view FE-SEM splicing technology: A case study on the Hetaoyuan Formation in Biyang sag[J]. China Petroleum Exploration, 2018, 23(5): 79-87.
[24] 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1): 151-161.
  JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161.
[25] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
  ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
[26] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76.
  DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76.
[27] HU H Y, HAO F, LIN J F, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, eastern Sichuan Basin, China[J]. International Journal of Coal Geology, 2017, 173: 40-50.
文章导航

/