油气藏评价与开发 >
2025 , Vol. 15 >Issue 2: 266 - 273
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.02.011
基于机器学习的煤层气井产能预测与压裂参数优化
收稿日期: 2024-08-29
网络出版日期: 2025-04-01
基金资助
国家自然科学基金项目“深部煤系造穴激活储层地质约束机理与优化”(42272198)
Machine learning-based coalbed methane well production prediction and fracturing parameter optimization
Received date: 2024-08-29
Online published: 2025-04-01
沁水盆地南部煤层气区块储层非均质性强,气井产能预测难度大,且压裂施工缺乏针对性设计,导致压裂后井间生产效果差异显著。为此,基于沁水盆地南部187口煤层气直井的地质、测井、压裂和生产数据,构建了基于多任务学习策略的随机森林算法的气井产能预测模型,并通过粒子群优化算法优化压裂参数。研究使用深度卷积自动编码-解码器处理测井曲线等非结构化数据,采用随机森林算法结合多任务学习策略,有效缓解了样本数据有限和泛化性能低的问题,使得模型在小样本数据下仍能保持较高的预测精度。分析结果表明:深度、施工液量和小粒径支撑剂用量是影响产能的主要因素;地质条件是决定气井长期产能的关键因素;压裂参数则主要影响气井的峰值产能。多任务学习的随机森林算法在小样本数据上表现出高预测精度,测试集中峰值30 d和5 a累产气量的决定系数(R²)分别为0.883和0.887。对6口新井的5 a累产气量预测R²达0.901,显示出模型在实际应用中的高准确性和稳定性。通过粒子群优化算法对压裂参数进行优化后的方案,能够显著提高气井的产能分类等级或提升气井的产能水平。优化后的预测单井产能比原实际方案提高了约153%至188%,显示出优化方案在实际应用中的显著效果。通过结合多任务学习和粒子群优化算法,成功解决了小样本数据下的产能预测及压裂参数优化问题。构建的产能预测模型和压裂参数优化算法为沁水盆地南部煤层气高效开发提供了理论支持和实践参考。
胡秋嘉 , 刘春春 , 张建国 , 崔新瑞 , 王千 , 王琪 , 李俊 , 何珊 . 基于机器学习的煤层气井产能预测与压裂参数优化[J]. 油气藏评价与开发, 2025 , 15(2) : 266 -273 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.02.011
The coalbed methane (CBM) blocks in the southern Qinshui Basin exhibit strong reservoir heterogeneity, resulting in challenges for accurate productivity prediction of gas wells. Furthermore, the absence of tailored fracturing designs has caused substantial variations in post-fracturing production performance among adjacent wells. To address these issues, a predictive model for well production capacity was developed based on geological, well logging, fracturing, and production data from 187 vertical CBM wells in the southern Qinshui Basin. The model employs a random forest algorithm integrated with a multi-task learning strategy and utilizes a particle swarm optimization (PSO) algorithm to optimize fracturing parameters. A deep convolutional autoencoder-decoder was applied to unstructured data (e.g., well logs), and the integration of random forest with multi-task learning strategies effectively addressed limited sample sizes and poor generalization, ensuring high prediction accuracy under small-data conditions. The results indicate that well depth, fracturing fluid volume, and small-sized proppant dosage are the dominant factors affecting productivity. Geological conditions determine long-term productivity, whereas fracturing parameters predominantly affect peak production performance. The multi-task random forest algorithm achieved high accuracy on small datasets, with R² values of 0.883 for 30-day peak cumulative production and 0.887 for 5-year cumulative production in the test set. Furthermore, the R² for 5-year cumulative production predictions of six new wells reached 0.901, confirming the model’s robustness and reliability in field applications. The PSO-optimized fracturing parameters significantly improved the productivity classification and overall productivity levels of the gas wells. The optimized parameters increased single-well productivity by 153-188% compared to original designs, demonstrating substantial practical efficacy. The combined multi-task learning and PSO framework successfully resolves productivity prediction and fracturing optimization challenges under small-data constraints. The proposed model and fracturing parameter optimization algorithm provide theoretical support and practical references for efficient CBM development in the southern Qinshui Basin.
[1] | 张聪, 李可心, 贾慧敏, 等. 郑庄北中深部煤层气水平井产能影响因素及开发技术优化[J]. 煤田地质与勘探, 2024, 52 (6): 21-32. |
ZHANG Cong, LI Kexin, JIA Huimin, et al. Factors influencing the productivity and technology optimization of horizontal wells for moderately deep coalbed methane in the northern Zhengzhuang block[J]. Coal Geology & Exploration, 2024, 52(6): 21-32. | |
[2] | 王琪, 张聪, 贾慧敏, 等. 煤层气筛管水平井低产原因分析和治理对策研究: 以沁水盆地南部煤层气筛管水平井为例[J]. 中国煤层气, 2024, 21(1): 21-24. |
WANG Qi, ZHANG Cong, JIA Huimin, et al. Study on causes and treatment methods of low production of coalbed methane screen horizontal well: A case study in southern Qinshui Basin[J]. China Coalbed Methane, 2024, 21(1): 21-24. | |
[3] | 唐书恒, 李洋, 吕建伟. 原位储层生物地球化学评价及其对煤层气开采的指示意义: 以沁水盆地南部柿庄南区块为例[J]. 煤炭学报, 2024, 49(1): 555-562. |
TANG Shuheng, YANG Ll, Jianwei LYU. In situ reservoir biogeochemical evaluation and its indicative significance for coalbed methane extraction: Taking the Shizhuangnan Block in the southern Qinshui Basin as an example[J]. Journal of China Coal Society, 2024, 49(1): 555-562. | |
[4] | 张聪, 李梦溪, 胡秋嘉, 等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J]. 煤田地质与勘探, 2024, 52(2): 122-133. |
ZHANG Cong, Mengxi Ll, HU Qiujia, et al. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 122-133. | |
[5] | 朱庆忠. 沁水盆地高煤阶煤层气高效开发关键技术与实践[J]. 天然气工业, 2022, 42(6): 87-96. |
ZHU Qingzhong. Key technologies and practices for efficient development of high-rank CBM in the Qinshui Basin[J]. Natural Gas Industry, 2022, 42(6): 87-96. | |
[6] | LYU Y M, TANG D Z, XU H, et al. Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China[J]. International Journal of Coal Geology, 2012, 96: 93-108. |
[7] | LI H Y, LAU H C, HUANG S. China’s coalbed methane development: A review of the challenges and opportunities in subsurface and surface engineering[J]. Journal of Petroleum Science and Engineering, 2018, 166: 621-635. |
[8] | DU S Y, WANG M Z, YANG J S, et al. An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning[J]. Energy, 2023, 282: 128877. |
[9] | 贾慧敏, 胡秋嘉, 张聪, 等. 煤层气双层合采直井产能预测及排采试验: 以沁水盆地郑庄西南部为例[J]. 油气藏评价与开发, 2022, 12 (4): 657-665. |
JIA Huimin, HU Qiujia, ZHANG Cong, et al. Prediction of productivity and co-drainage trial of bilayer vertical coalbed methane wells: Cases study of the southwest of Zhengzhuang Block, Qinshui Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 657-665. | |
[10] | 宋洪庆, 都书一, 杨焦生, 等. 基于机器学习的煤层气产能标定智能算法及影响因素分析[J]. 工程科学学报, 2024, 46(4): 614-626. |
SONG Hongqing, DU Shuyi, YANG Jiaosheng, et al. Forecasting and influencing factor analysis of coalbed methane productivity utilizing intelligent algorithms[J]. Chinese Journal of Engineering, 2024, 46(4): 614-626. | |
[11] | 王贝, 门鹏, 李腾, 等. 基于机器学习可解释性算法的石嘴山矿区煤层气井排采主控因素分析[J]. 中国煤层气, 2023, 20(5): 3-7. |
WANG Bei, Peng MEN, Teng Ll, et al. Analysis of main control factors of coalbed methane well drainage in Shizuishan Mining Area based on machine learning interpretability algorithm[J]. China Coalbed Methane, 2023, 20(5): 3-7. | |
[12] | DU S Y, WANG J L, WANG M Z, et al. A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns[J]. Energy, 2023, 263: 126121. |
[13] | FU X H, QIN Y, WANG G G X, et al. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology[J]. Fuel, 2009, 88(11): 2269-2277. |
[14] | GAN T, BALMAIN B, SIGBATULLIN A. Formation evaluation logoff results comparing new generation mining-style logging tools to conventional oil and gas logging tools for application in coalbed methane (CBM) field development[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1237-1250. |
[15] | 胡秋嘉, 张聪, 贾慧敏, 等. 沁水盆地南部郑庄区块中北部煤层气直井增产新技术研究与应用[J]. 煤炭学报, 2024, 49(3): 1518-1529. |
HU Qiujia, ZHANG Cong, JIA Huimin, et al. Research and application of a new stimulation technology for deep coalbed methane vertical wells in central and Northern Zhengzhuang block, southern Qinshui Basin[J]. Journal of China Coal Society, 2024, 49(3): 1518-1529. | |
[16] | 张聪, 胡秋嘉, 冯树仁, 等. 沁水盆地南部煤层气地质工程一体化关键技术[J]. 煤矿安全, 2024, 55(2): 19-26. |
ZHANG Cong, HU Qiujia, FENG Shuren, et al. Key technologies for integration of coalbed methane geology and engineering in southern Qinshui Basin[J]. Safety in Coal Mines, 2024, 55(2): 19-26. | |
[17] | LI L J, LIU D M, CAI Y D, et al. Coal structure and its implications for coalbed methane exploitation: A review[J]. Energy & Fuels, 2021, 35(1): 86-110. |
[18] | 胡秋嘉, 李梦溪, 乔茂坡, 等. 沁水盆地南部高阶煤煤层气井压裂效果关键地质因素分析[J]. 煤炭学报, 2017, 42 (6): 1506-1516. |
HU Qiujia, LI Mengxi, QIAO Maopo, et al. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in Southern Qinshui Basin[J]. Journal of China Coal Society, 2017, 42(6): 1506-1516. | |
[19] | 李敬松, 王涛, 王金伟, 等. 基于多层感知机模型的煤层气井压后生产动态反演研究[J]. 测井技术, 2023, 47(5): 558-568. |
LI Jingsong, WANG Tao, WANG Jinwei, et al. Production dynamic of coal-bed methane after well pressure based on multi-layer perceptron model inversion study[J]. Well Logging Technology, 2023, 47(5): 558-568. | |
[20] | MENG M, ZHONG R Z, WEI Z L. Prediction of methane adsorption in shale: Classical models and machine learning based models[J]. Fuel, 2020, 278: 118358. |
[21] | MIN C, WEN G Q, GOU L J, et al. Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing[J]. Energy, 2023, 285: 129211. |
[22] | MWAKIPUNDA G C, WANG Y T, MGIMBA M M, et al. Recent advances in carbon dioxide sequestration in deep unmineable coal seams using CO2-ECBM technology: Experimental studies, simulation, and field applications[J]. Energy & Fuels, 2023, 37: 17161-17186. |
[23] | GONG H H, LI Y Y, ZHANG J N, et al. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107865. |
[24] | 龚斌, 王虹雅, 王红娜, 等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报, 2023, 44(11): 1949-1958. |
GONG Bin, WANG Hongya, WANG Hongna, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica, 2023, 44(11): 1949-1958. | |
[25] | WANG H Y, WANG Q Q, HUANG L, et al. Intelligent decision-making system for integrated geological and engineering of deep coalbed methane development[J]. Energy & Fuels, 2023, 37(18): 13976-13984. |
[26] | GAO X Y, PENG D, KUI G F, et al. Reinforcement learning based optimization algorithm for maintenance tasks scheduling in coalbed methane gas field[J]. Computers & Chemical Engineering, 2023, 170: 108131. |
[27] | ZHAO M M, XU H, ZHONG W B, et al. Robust and breathable all-textile gait analysis platform based on LeNet convolutional neural networks and embroidery technique[J]. Sensors and Actuators A: Physical, 2023, 360: 114549. |
[28] | SONG H Q, DU S Q, YANG J H, et al. Evaluation of hydraulic fracturing effect on coalbed methane reservoir based on deep learning method considering physical constraints[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110360. |
[29] | MARINS M A, BARROS B D, SANTOS I H, et al. Fault detection and classification in oil wells and production/service lines using random forest[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107879. |
[30] | DU S Y, ZHAO X G, XIE C Y, et al. Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model[J]. Petroleum Science, 2023, 20(5): 2951-2966. |
/
〈 |
|
〉 |