油气藏评价与开发 >
2025 , Vol. 15 >Issue 2: 310 - 323
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.02.016
深层煤层水平井压裂动态应力场研究——以鄂尔多斯盆地大宁—吉县区块为例
收稿日期: 2024-08-15
网络出版日期: 2025-04-01
基金资助
国家自然科学基金项目“一种复杂缝网的能量断裂准则及其在致密砂岩压裂模拟中的应用”(11672333)
Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin
Received date: 2024-08-15
Online published: 2025-04-01
中国深层煤层气示范基地已初步建成,并逐步迈入规模性勘探开发的重要阶段。这一突破为能源领域带来了新的希望与挑战。随着开发的深入,传统三维静态模型在预测强非均质性储层在水平井大规模压裂工况下的渗流-应力耦合动态地应力演化方面显示出局限性。对此,该研究以大宁—吉县区块的深部煤为例,围绕储层压裂动态应力场展开深入探究。研究采用地质工程一体化的煤层气储层压裂缝网模型,对水平井平台压裂过程进行模拟,综合考虑了地质条件和工程因素,能够更真实地反映实际情况。以时间为尺度,针对水平井台S开展大规模压裂动态应力场模拟研究。结果表明:经过多轮压裂诱导应力的叠加作用,现今地应力分布发生了显著变化。为了准确量化这种影响,引入了水平主应力差异系数这一关键指标,即两向水平应力的比值。当该参数接近1时,表明压裂改造效果最佳。模拟结果显示:压后区域内的水平主应力差异系数的范围由1.15~1.25逐渐减小至1.05~1.15,井周大部分区域的水平主应力差异系数小于1.10,这表明水平井大规模压裂改造效果良好。这一研究成果不仅为深层煤层大规模压裂开发提供了更合理的模拟方法,还为优化压裂设计、提高煤层气采收率提供了科学依据。通过地质工程一体化的方法,能够更准确地预测和评估压裂过程中的动态应力场变化,从而指导实际生产中的压裂作业。
赵海峰 , 王成旺 , 席悦 , 王超伟 . 深层煤层水平井压裂动态应力场研究——以鄂尔多斯盆地大宁—吉县区块为例[J]. 油气藏评价与开发, 2025 , 15(2) : 310 -323 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.02.016
China’s deep coalbed methane demonstration base has been preliminarily established and is gradually entering an important stage of large-scale exploration and development. This breakthrough has brought new opportunities and challenges to the energy sector. With ongoing development, traditional 3D static models have proven inadequate for predicting the dynamic in-situ stress evolution of coupled seepage-stress interaction in strongly heterogeneous reservoirs under large-scale horizontal well fracturing conditions. In response, this study takes the deep coalbed methane reservoir in the Daning-Jixian block as an example to conduct in-depth investigation of the dynamic stress field during reservoir fracturing. This study adopts an integrated geological engineering fracture network model for coalbed methane reservoirs to simulate the horizontal well platform fracturing process, comprehensively considering both geological conditions and engineering factors, thereby more accurately reflecting the actual situation. A time-dependent simulation study of the dynamic stress field during large-scale fracturing for horizontal well platform S was carried out. The results indicate that after multiple rounds of fracturing-induced stress superposition, the present in-situ stress distribution has undergone significant alterations. In order to quantify this impact, a key indicator—the horizontal principal stress difference coefficient, defined as the ratio of the two horizontal principal stresses—was introduced. When this coefficient approaches 1, it indicates an optimal fracturing effect. The simulation results show that the range of the horizontal principal stress difference coefficient in the post-fracturing area gradually decreases from 1.15-1.25 to 1.05-1.15, with most areas around the well exhibiting a value of less than 1.10, demonstrating that the large-scale fracturing in horizontal wells is effective. This research achievement not only provides a more reasonable simulation method for the large-scale fracturing development of deep coalbed methane, but also offers a scientific basis for optimizing fracturing design and improving coalbed methane recovery. Through an integrated geological engineering method, it is possible to more accurately predict and assess the dynamic stress field changes during the fracturing process, thereby guiding the fracturing operations in actual production.
[1] | 余琪祥, 罗宇, 曹倩, 等. 准噶尔盆地东北缘深层煤层气勘探前景[J]. 天然气地球科学, 2023, 34(5): 888-899. |
YU Qixiang, LUO Yu, CAO Qian, et al. Exploration prospect of deep coalbed methane in the northeastern margin of Junggar Basin[J]. Natural Gas Geoscience, 2023, 34(5): 888-899. | |
[2] | 张遂安, 张典坤, 彭川, 等. 中国煤层气产业发展障碍及其对策[J]. 天然气工业, 2019, 39(4): 118-124. |
ZHANG Suian, ZHANG Diankun, PENG Chuan, et al. Obstacles to the development of CBM industry and countermeasures in China[J]. Natural Gas Industry, 2019, 39(4): 118-124. | |
[3] | 王建国, 滕腾, 高峰. 煤层气热裂开采的多物理场耦合理论及数值模拟[M]. 中国矿业大学出版社, 2019. |
WANG Jianguo, TENG teng, GAO feng. Multi-physical coupling theory and Numerical Simulation of coalbed methane thermal cracking [M]. China University of Mining and Technology Press, 2019. | |
[4] | 赵海峰, 杨紫怡, 梁为, 等. 深部煤层近井激光热裂机理及工艺参数优化[J]. 煤田地质与勘探, 2024, 52(2): 161-170. |
ZHAO Haifeng, YANG Ziyi, LIANG Wei, et al. Mechanisms and technological parameter optimization of near-wellbore laser thermal fracturing for deep coal seams[J]. Coal Geology & Exploration,2024,52(2): 161-170. | |
[5] | 李曙光, 王成旺, 王红娜, 等. 大宁-吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(9): 59-67. |
LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9): 59-67. | |
[6] | 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200. |
NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50(3): 193-200. | |
[7] | 胡千庭, 刘继川, 李全贵, 等. 煤层顶板分段水力压裂应力及裂缝演化试验研究[J]. 中国矿业大学学报, 2023, 52(6): 1084-1095. |
HU Qianting, LIU Jichuan, LI Quangui, et al. Study on stress and fracture evolution of sectional hydraulic fracturing of coal seam roof [J]. Journal of China University of Mining & Technology, 2023, 52(6): 1084-1095. | |
[8] | 冯青, 王涛, 杨浩, 等. 煤层气压裂井裂缝参数优化及效果评价[J]. 天然气地球科学, 2018, 29(11): 1639-1646. |
FENG Qing, WANG Tao, YANG Hao, et al. Fracture parameters’ optimization and evaluation of CBM fractured wells[J]. Natural Gas Geoscience, 2018, 29(11): 1639-1646. | |
[9] | 边利恒, 张亮, 刘清. 天然裂隙对煤层气压裂效果的影响: 以鄂尔多斯盆地韩城区块为例[J]. 天然气工业, 2018, 38(增刊1): 129-133. |
BIAN Liheng, ZHANG Liang, LIU Qing. Effects of natural fractures on CBM fracturing performance: A case study of Hancheng Block,Ordos Basin[J]. Natural Gas Industry, 2018, 38(Suppl. 1): 129-133. | |
[10] | 朱卫平, 张天翔, 甄怀宾, 等. 煤层气压裂水平井渗流规律研究进展[J]. 天然气工业, 2018, 38(增刊1): 38-42. |
ZHU Weiping, ZHANG Tianxiang, ZHEN Huaibin, et al. Research progress on seepage laws of fractured horizontal Wells in coalbed methane[J]. Natural Gas Industry, 2018, 38(Suppl. 1): 38-42. | |
[11] | CHEN Z R, SUN T F. Evaluation Method of Coal-Bed Methane Fracturing in the Qinshui Basin[J]. Mathematical Problems in Engineering, 2020, 20201. |
[12] | 杨兆中, 熊俊雅, 刘俊, 等. 基于 Apriori 关联分析的煤层气压裂效果主控因素识别[J]. 油气藏评价与开发, 2020, 10(4): 63-69. |
YANG Zhaozhong, XIONG Junya, LIU Jun, et al. Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4): 63-69. | |
[13] | 高慧, 冯春, 朱心广, 等. 基于连续-非连续元三维煤层气压裂开采分析[J]. 山东大学学报(工学版), 2021, 51(6): 119-128. |
GAO Hui, FENG Chun, ZHU Xinguang, et al. Three-dimensional hydraulic fracturing analysis of coal bed methane based on continuous-discontinuous element method[J]. Journal of Shandong University (Engineering Science), 2021, 51(6): 119-128. | |
[14] | 王秀荣, 赵镨, 程彦, 等. 淮南地区煤层气压裂地面微震监测技术研究[J]. 中国煤炭地质, 2021, 33 (10): 140-147. |
WANG Xiurong, ZHAO Pu, CHENG Yan, et al. Study on CBM fracturing surface microseismic monitoring technology in Huainan area[J]. Coal Geology of China, 2021, 33(10): 140-147. | |
[15] | 闵超, 代博仁, 石咏衡, 等. 基于聚类匹配的煤层气压裂效果主控因素识别[J]. 特种油气藏, 2022, 29 (4): 135-141. |
MIN Chao, DAI Boren, SHI Yongheng, et al. Identification of main controlling factors of coalbed methane fracturing effect based on cluster matching[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 135-141. | |
[16] | 王秀荣, 赵争光, 张燕生, 等. 煤层气压裂微震监测数据高级属性解释技术研究[J]. 中国煤炭地质, 2022, 34(9): 49-54. |
WANG Xiurong, ZHAO Zhengguang, ZHANG Yansheng, et al. Research on advanced microseismic attributes interpretation technology for hydraulic fracturing of coalbed methane reservoir[J]. Coal Geology of China, 2022, 34(9): 49-54. | |
[17] | 刘英君, 朱海燕, 唐煊赫, 等. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业, 2022, 42(2): 82-92. |
LIU Yingjun, ZHU Haiyan, TANG Xuanhe, et al. Four-dimensional in-situ stress model of CBM reservoirs based on geology-engineering integration[J]. Natural Gas Industry, 2022, 42(2): 82-92. | |
[18] | 王维, 韩金良, 王玉斌, 等. 大宁-吉县区块深层煤岩气水平井钻井技术[J]. 石油机械, 2023, 51(11): 70-78. |
WANG Wei, HAN Jinliang, WANG Yubin, et al. Drilling technology for deep coal rock gas horizontal wells in Da’ning-Jixian Block[J]. China Petroleum Machinery, 2023, 51(11): 70-78. | |
[19] | 魏子俊, 程万, 蒋国盛, 等. 基于边界元法的压裂液返排数值模拟[J]. 科学技术与工程,2021,21(8): 3082-3089. |
WEI Zijun, CHENG Wan, JIANG Guosheng, et al. Numerical simulation of fracturing fluid flowback behavior using boundary element method[J]. Science Technology and Engineering, 2021, 21(8): 3082-3089. | |
[20] | 韩剑雄, 严冬, 张阳. 基于边界元法分析多级裂缝周围应力分布对水力压裂水平井簇间距的影响[J]. 中国石油和化工标准与质量, 2013, 33(24): 158. |
HAN Jianxiong, YAN Dong, ZHANG Yang. Effect of stress distribution around fractures on cluster spacing of hydraulically fractured horizontal wells based on boundary element method[J]. China Petroleum and Chemical Standards and Quality, 2013, 33(24): 158. | |
[21] | YONG R, ZHOU F J, LI M H, et al. Effects of Fracturing Parameters on Fracture Unevenness During Large-Stage Multi-Cluster Fracturing in Horizontal Wells[J]. Frontiers in Energy Research, 2021, 9(21): 2296. |
[22] | 安继刚, 王建国, 王鹏, 等. 致密油藏水平井同井缝间驱替补能实施方案研究及现场应用: 以槐树庄油区L井为例[J]. 中国海上油气, 2024, 36(5): 110-119. |
AN Jigang, WANG Jianguo, WANG Peng, et al. Implementation scheme research and field application of interstage displacement and energy substitution in horizontal wells of tight oil reservoirs: A case study of Well L in Huaishuzhuang area[J]. China Offshore Oil and Gas, 2024, 36(5): 110-119. | |
[23] | 郭广山, 王海侨, 刘松楠, 等. 沁水盆地古交区块煤层气水平井产能影响因素分析[J]. 中国海上油气, 2024, 36(2): 110-118. |
GUO Guangshan, WANG Haiqiao, LIU Songnan, et al. Analysis of factors influencing the productivity of horizontal wells in Gujiao coalbed methane block of Qinshui Basin[J]. China Offshore Oil and Gas, 2024, 36(2): 110-118. | |
[24] | 张皎生, 杨焕英, 王晶, 等. 基于复杂缝网精细刻画的致密油气藏水平井多段压裂数值模拟技术[J]. 中国海上油气, 2023, 35(4): 103-111. |
ZHANG Jiaosheng, YANG Huanying, WANG Jing, et al. A method for numerical simulation of multi-stage fracturing of horizontal well in tight oil and gas reservoirs based on fine characterization of complex fracture network[J]. China Offshore Oil and Gas, 2023, 35(4): 103-111. | |
[25] | 赵金, 赵星, 刘欣佳, 等. 诱导应力对天然裂缝破坏作用机理研究[J]. 中国科技论文, 2023, 18(5): 574-580. |
ZHAO Jin, ZHAO Xing, LIU Xinjia, et al. Study on effect of induced stress on natural fracture failure during hydraulic fracture approaching[J]. China Sciencepaper, 2023, 18(5): 574-580. | |
[26] | 李明飞, 张超, 黄文鑫, 等. 射孔和储层参数对压裂裂缝扩展规律影响分析[J]. 石油机械, 2024, 52(12): 62-72. |
LI Mingfei, ZHANG Chao, HUANG Wenxin, et al. Analysis on the influence of perforation and reservoir parameters on the propagation law of induced fractures[J]. China Petroleum Machinery, 2024, 52(12): 62-72. | |
[27] | 张亚飞, 王滨, 贾云林, 等. 煤层气水平井筒倾斜-水平耦合流动规律影响分析[J]. 石油机械, 2024, 52(6): 86-95. |
ZHANG Yafei, WANG Bin, JIA Yunlin, et al. Analysis on the flow in horizontal coalbed methane well under coupling of tilted and horizontal sections[J]. China Petroleum Machinery, 2024, 52(6): 86-95. | |
[28] | 郭天魁, 王云鹏, 陈铭, 等. 煤层顶板水平井穿层压裂适应性数值模拟[J]. 天然气工业, 2021, 41(11): 74-85. |
GUO Tiankui, WANG Yunpeng, CHEN Ming, et al. Numerical simulation of adaptability of horizontal well layer-penetrating fracturing in the roof of coal seam[J]. Natural Gas Industry, 2021, 41(11): 74-85. |
/
〈 |
|
〉 |