油气藏评价与开发 >
2025 , Vol. 15 >Issue 2: 332 - 338
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.02.018
弯曲影响下悬链锚腿系泊系统在南海涠洲海域适用性分析
收稿日期: 2024-12-12
网络出版日期: 2025-04-01
基金资助
中国石化科技部项目“涠洲油田海工设施优化关键技术研究”(P24119)
Applicability analysis of catenary anchor leg mooring system subjected to bending effects in Weizhou sea area of South China Sea
Received date: 2024-12-12
Online published: 2025-04-01
针对弯曲影响下悬链锚腿系泊(CALM)系统在南海涠洲海域的适用性进行研究,分析了该系泊系统在南海涠洲海域极限环境条件下的自存能力,并提出了考虑弯曲影响后的极限系泊力校核方法。建立了南海涠洲海域波浪有义波高-平均上穿零周期联合概率分布模型,根据该模型推算并绘制南海涠洲海域波浪有义波高-平均上穿零周期百年回归周期等值线。联合百年回归周期风条件和十年回归周期流条件,构建南海涠洲海域极限校核海况。通过莫里森方程(Morison equation)分别对直径为76.2、88.9、101.6 mm R4S级无挡锚链系泊系统进行了时域下系泊水动力分析,并通过耿贝尔分布(Gumbel distribution)评估了最可能出现的极限系泊张力。通过有限元分析,解析了止链器和锚链管系泊布置形式所致的锚链环平面外弯曲与平面内弯曲对系泊链应力分布的影响,最终对分析系泊系统在南海涠洲远海海域适应性进行了评估。分析结论表明:采用止链器和锚链管系泊布置形式,系泊锚链会受到额外的平面内弯曲与平面外弯曲所致的应力集中,需额外考虑1.3倍弯曲安全系数。直径101.6 mm锚链系泊系统在南海涠洲海域具有适用性;直径88.9 mm锚链系泊系统可以满足标准校核,但无法满足考虑锚链间弯曲影响下的系泊分析要求;直径76.2 mm锚链系泊系统则不能满足标准校核。
张宗峰 , 薛绪田 , 杜鹏 , 魏羲 , 陈同彦 . 弯曲影响下悬链锚腿系泊系统在南海涠洲海域适用性分析[J]. 油气藏评价与开发, 2025 , 15(2) : 332 -338 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.02.018
This study focuses on the applicability of the catenary anchor leg mooring (CALM) system subjected to bending effects in the Weizhou sea area of the South China Sea. The survivability of the mooring system under extreme environmental conditions in the Weizhou sea area of the South China Sea was analyzed, and a verification method for ultimate mooring force considering the bending effects was proposed. The joint probability distribution model of significant wave height and mean zero up-crossing period in the Weizhou sea area of the South China Sea was established. Based on this model, the 100-year return period contour of significant wave height and mean zero up-crossing period was calculated and plotted. Combined with the 100-year return period wind condition and the 10-year return period flow condition, the ultimate verification sea state of the Weizhou sea area of the South China Sea was constructed. A time-domain hydrodynamic analysis of the CALM system was conducted based on the Morison Equation, and the most probable maximum mooring tensions of R4S studless mooring chains with diameters of 76.2, 88.9, and 101.6 mm were evaluated using the Gumbel Distribution. Finite element analysis was performed to examine the effects of in-plane and out-of-plane bending of mooring chains caused by the chain stopper and hawse pipe arrangement, and the resulting stress distribution in the mooring chain was analyzed. Finally, the applicability of the CALM system in the offshore Weizhou area of the South China Sea was evaluated. The analysis results showed that when using the mooring arrangement with the chain stopper and hawse pipe, the mooring chains experienced additional stress concentration due to in-plane and out-of-plane bending, requiring a bending safety factor of 1.3. The mooring system with 101.6 mm diameter chains was suitable for deployment in the Weizhou sea area of the South China Sea. The system with 88.9 mm diameter chains met the standard verification requirements but did not satisfy mooring analysis criteria when considering the bending effects between chain links. The system with 76.2 mm diameter chains did not meet the standard verification requirements.
[1] | 闫宏生, 苑恒, 李怀亮, 等. 大抓力锚和吸力锚在CALM型单点系泊系统中的应用[J]. 中国海洋平台, 2022, 37(4): 31-36. |
YAN Hongsheng, YUAN Heng, LI Huailiang, et al. Application of fluke anchor and suction anchor in CALM single-point mooring System[J]. China Offshore Platform, 2022, 37(4): 31-36. | |
[2] | 刘帅, 蔡铮, 王亮, 等. CALM式单点系泊系统完工调试与检查[J]. 现代工业经济和信息化, 2020, 10(4): 123-124. |
LIU Shuai, CAI Zheng, WANG Liang, et al. Completion debugging and inspection of calm single point mooring system[J]. Modern Industrial Economy and Informationization, 2020, 10(4): 123-124. | |
[3] | 周楠, 刘旭平, 李俊汲. CALM单点系泊系统设计综述[J]. 海洋工程装备与技术, 2017, 4(2): 102-104. |
ZHOU Nan, LIU Xuping, LI Junji. Design method summary of calm single point mooring[J]. Ocean Engineering Equipment and Technology, 2017, 4(2): 102-104. | |
[4] | 周楠, 董宝辉, 李俊汲, 等. CALM单点系泊设施设计要点[J]. 海洋工程装备与技术, 2020, 7(6): 425-429. |
ZHOU Nan, DONG Baohui, LI Junji, et al. Key points in design of calm single point mooring facilities[J]. Ocean Engineering Equipment and Technology, 2020, 7(6): 425-429. | |
[5] | 罗晓健, 张爱霞, 李绂. 单点系泊系统设计思路及原则[J]. 中国海洋平台, 2013, 28(2): 19-23. |
LUO Xiaojian, ZHANG Aixia, LI Fu. The principles and ideas for single point moorings design[J]. China Offshore Platform, 2013, 28(2): 19-23. | |
[6] | 於增月, 黄水祥, 杨泽亮. CALM型单点系泊系统动态响应规律研究[J]. 石油工程建设, 2023, 49(3): 25-32. |
YU Zengyue, HUANG Shuixiang, YANG Zeliang. Research on dynamic response rule of CALM-type single point mooring system[J]. Petroleum Engineering Construction, 2023, 49(3): 25-32. | |
[7] | 梁凯, 王亚琼, 徐万海, 等. 基于不同规范的CALM单点系泊系统锚链直径选型对比研究[J]. 海洋技术学报, 2020, 39(5): 100-104. |
LIANG Kai, WANG Yaqiong, XU Wanhai, et al. Comparative study on the selection of anchor chain diameter for calm single point mooring system based on different rules[J]. Journal of Ocean Technology, 2020, 39(5): 100-104. | |
[8] | 罗慧明, 王领, 李艳贞. 悬链式单点系泊锚链疲劳强度分析[J]. 中国海洋平台, 2016, 31(4): 19-26. |
LUO Huiming, WANG Ling, LI Yanzhen. Fatigue strength assessment of CLAM’s anchor chain[J]. China Offshore Platform, 2016, 31(4): 19-26. | |
[9] | 姜季江. 锚链分布方式对悬链式单点系泊浮筒系泊力的影响[J]. 机电设备, 2019, 36(6): 1-7, 18. |
JIANG Jijiang. Effects of anchor chains’ arrangement on mooring stress of single point mooring buoy of catenary anchor leg mooring system[J]. Mechanical and Electrical Equipment, 2019, 36(6): 1-7, 18. | |
[10] | 张志, 刘其民, 孔友南, 等. 悬链锚腿式单点系泊系统设计水深估算[J]. 水运工程, 2022, (5): 56-60. |
ZHANG Zhi, LIU Qimin, KONG Younan, et al. Estimation method for design water depth of CALM single-point mooring system[J]. Port & Waterway Engineering, 2022, (5): 56-60. | |
[11] | MELIS C, JEAN P, VARGAS P. Out-of-plane bending testing of chain links[C]// Paper OMAE2005-67353 presented at 24th Internation Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece, June 12-16, 2005. |
[12] | RAMPI L, VARGAS P. Fatigue testing of out-of-plane bending mechanism of chain links[C]// Paper OMAE2006-92488 presented at 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006. |
[13] | BRAKE E TER, VAN DER CAMMEN J, UITTENBOGAARD R. Calculation methodology of out of plane bending of mooring chains[C]// Paper OMAE2007-29178 presented at 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, June 10-15, 2007. |
[14] | LASSEN T, STORVOLL E, BECH A. Fatigue life prediction of mooring chains subjected to tension and out of plane bending[C]// Paper OMAE2009-79253 presented at 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, May 31 - June 6, 2009. |
[15] | LASSEN T, AARSNES J, GLOMNES E. Fatigue design methodology for large mooring chains subjected to out-of-plane bending[C]// Paper OMAE2014-23308 presented at 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, June 8-13, 2014. |
[16] | XUE X, CHEN N Z, PU Y, et al. Fracture mechanics analysis for mooring chain links subjected to out-of-plane bending (OPB)[J]. Marine Structure, 2020, 71, 102740. |
[17] | XUE X, CHEN N Z, PU Y. Mooring fatigue assessment evaluating chain twist and out-of-plane bending for a semi-submersible[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, 061703. |
[18] | Det Norske Veritas. Environmental conditions and environmental loads: DNV-RP-C205: 2019 [S]. Det Norske Veritas, 2019. |
[19] | American Petroleum Institute. Design and analysis of station keeping systems for floating structures: API-RP-2SK: 2020[S]. Washington: API Publishing Services, 2020. |
[20] | Det Norske Veritas. Position Mooring: offshore standards DNV-OS-E301: 2021[S]. Det Norske Veritas, 2021. |
/
〈 |
|
〉 |