油气开发

顺北超深断控凝析气藏流体非平衡相变对开采效果影响

  • 张宁 ,
  • 曹飞 ,
  • 李宗宇 ,
  • 张云 ,
  • 孙扬 ,
  • 潘毅 ,
  • 孙雷
展开
  • 1.中国石化西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830000
    2.西南石油大学石油与天然气工程学院,四川 成都 610500
张宁(1969—),男,硕士,高级工程师,主要从事油气藏开发方面的研究工作。地址:新疆维吾尔自治区乌鲁木齐市新市区长春南路466号中国石化西北石油科研生产园区,邮政编码:830011。E-mail: zhangn.xbsj@sinopec.com

收稿日期: 2024-04-30

  网络出版日期: 2025-05-28

基金资助

中国石化科技攻关项目“顺北断溶体凝析气藏流动机理与开发对策研”(P22030)

Impact of non-equilibrium phase transition of reservoir fluid on production performance in Shunbei ultra-deep fault-controlled condensed gas reservoir

  • ZHANG Ning ,
  • CAO Fei ,
  • LI Zongyu ,
  • ZHANG Yun ,
  • SUN Yang ,
  • PAN Yi ,
  • SUN Lei
Expand
  • 1. Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830000, China
    2. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2024-04-30

  Online published: 2025-05-28

摘要

受超深超高温超高压成藏控藏机制影响,顺北超深层断控体凝析气藏地层流体呈现出超临界凝析气复杂相态特征,而其复杂相态演化行为对开发动态会产生怎样的影响,是顺北超深层断控体凝析气藏开发过程亟待探索和解决的问题。以顺北4号断裂带高含凝析油超临界凝析气为研究对象,首先运用高温高压可视化实验观测方法开展顺北凝析气藏近临界凝析油气流体临界乳光现象、非平衡相变现象、雾状反凝析沉降临界慢化现象,以及反凝析过程流体分层等特殊相态演化实验观测研究,而后分析高温超高压条件下近临界凝析气流体所产生的非平衡相态演化特征,初步揭示了非平衡相变及渗流对气井衰竭开采过程反凝析早期雾状反凝析沉降弛豫慢化现象等对凝析油采出程度的影响,得到在PVT(压力-容积-温度)釜中一定气柱高度中从露点压力开始降压至最大反凝析压力的雾状凝析油重力沉降弛豫时间累计可达1 193 s,转换到顺北凝析气藏大纵深缝洞体流动空间可达7 026 s,通过合理控制采速则可提高雾状反凝析油采出程度为4.99%;基于长岩心非平衡渗流实验测试得到合理控制采速可使反凝析油的采出程度提高了7.14%。结合顺北4号带典型气井生产曲线的变化规律,探讨了非平衡相变和雾状反凝析沉降弛豫效应对凝析气井反凝析阶段凝析油采出程度的影响。实际开采动态显示,目前凝析油采出程度较天然气高出5%以上,研发的高温高压原位相态观测系统已成功应用于塔里木、四川盆地等超深层气藏,可为顺北超深层凝析气藏开发动态特征分析及开发对策调整提供一定的参考。

本文引用格式

张宁 , 曹飞 , 李宗宇 , 张云 , 孙扬 , 潘毅 , 孙雷 . 顺北超深断控凝析气藏流体非平衡相变对开采效果影响[J]. 油气藏评价与开发, 2025 , 15(3) : 471 -478 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.014

Abstract

Under the influence of the ultra-deep, ultra-high temperature, and ultra-high pressure reservoir formation and control mechanism, stratum fluid in the Shunbei ultra-deep fault-controlled condensate gas reservoir exhibits complex phase characteristics of supercritical condensate gas. The impact of the complex phase evolution behavior on the development dynamics is an urgent issue to be addressed in the development process of the Shunbei ultra-deep fault-controlled condensate gas reservoir. Using the supercritical condensate gas with high condensate oil content from the Shunbei No. 4 fault zone as the subject of study, high-temperature and high-pressure visual experimental observation methods were first used to study the near-critical condensate oil and gas fluid’s critical opalescence, non-equilibrium phase transition, mist retrograde condensation sedimentation, critical slow-down phenomenon, and special phase evolution behavior such as fluid stratification in the retrograde condensation process. Subsequently, the non-equilibrium phase evolution characteristics of near-critical condensate gas fluid under high-temperature and ultra-high pressure conditions were analyzed, revealing the impact of non-equilibrium phase transition and seepage on early-stage mist retrograde condensation, sedimentation and relaxation slow-down phenomenon during gas well depletion, ultimately affecting the recovery degree of condensate oil. The relaxation time for mist condensate oil gravitational settling from the dew point pressure to the maximum retrograde condensation pressure in the PVT (pressure-volume-temperature) apparatus could reach 1 193 s, which when scaled to the deep fracture-cavity flow space of the Shunbei condensate gas reservoir, could correspond to 7 026 s. By reasonably controlling the production rate, the recovery degree of mist retrograde condensate oil could be increased by 4.99%. Based on long-core non-equilibrium seepage experiments, it was found that reasonably controlling the production rate could increase the recovery degree of retrograde condensate oil by 7.14%. Combining the the production curve patterns of typical gas wells in the Shunbei No. 4 zone, the influence of non-equilibrium phase transition and mist retrograde condensation sedimentation relaxation effect on condensate oil recovery degree during the retrograde condensation stage was explored. Actual production data showed that the current condensate oil recovery degree was more than 5% higher than that of natural gas. The developed high-temperature and high-pressure in-situ phase observation system has been successfully applied to ultra-deep gas reservoirs in Tarim Basin and Sichuan Basin, and can provide a reference for the analysis of the development dynamics and the adjustment of development strategies for the Shunbei ultra-deep condensate gas reservoir.

参考文献

1 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
  QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Bain[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
2 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142.
  YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142.
3 陈烈, 邵皓枫, 尹贝, 等. 顺北油气田超深井目的层测井施工技术探讨[J]. 石油地质与工程, 2024, 38(3): 117-121.
  CHEN Lie, SHAO Haofeng, YIN Bei, et al. Exploration of logging construction technology for target layers in ultra deep wells in Shunbei oil and gas field[J]. Petroleum Geology & Engineering, 2024, 38(3): 117-121.
4 王轲, 慈兴华, 杜焕福, 等. 塔里木盆地顺北碳酸盐岩元素地球化学特征与油气富集机制[J]. 世界石油工业, 2024, 31(2): 55-64.
  WANG Ke, Xinghua CI, DU Huanfu, et al. Geochemical characteristics and oil & gas enrichment mechanisms of carbonate rocks in Shunbei area of Tarim Basin[J]. World Petroleum Industry, 2024, 31(2): 55-64.
5 胡来东, 张志林, 徐雷良, 等. 塔里木盆地顺北地区碳酸盐岩断控储集体连通性量化表征[J]. 世界石油工业, 2024, 31(6): 30-37.
  HU Laidong, ZHANG Zhilin, XU Leiliang, et al. Internal connectivity quantitative characterization of fault-controlled grid reservoirs in Shunbei area, Tarim Basin[J]. World Petroleum Industry, 2024, 31(6): 30-37.
6 曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984.
  CAO Zicheng, LU Qinghua, GU Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984.
7 黄越义, 廖玉宏, 陈承声, 等. 塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1): 138-149.
  HUANG Yueyi, LIAO Yuhong, CHEN Chengsheng, et al. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 138-149.
8 朱莲花, 徐珊. 塔里木盆地顺北地区1号、5号断裂带奥陶系原油地球化学特征及控藏因素[J]. 世界石油工业, 2024, 31(4): 58-68.
  ZHU Lianhua, XU Shan. Geochemical characteristics and reservoir controlling factors of Ordovician ultra-deep crude oil in No.1 and No.5 fault zones in Shunbei area, Tarim Basin[J]. World Petroleum Industry, 2024, 31(4): 58-68.
9 于渌, 郝柏林, 陈晓松. 边缘奇迹: 相变和临界现象[M]. 北京: 科学出版社, 2005.
  YU Lu, HAO Bailin, CHEN Xiaosong. Edge miracle: Phase transition and critical phenomenon[M]. Beijing: Science Press, 2005.
10 吴蕾, 袁士义, 胡永乐, 等. 凝析油蒸发动态特征[J]. 石油勘探与开发, 2004, 31(2): 122-124.
  WU Lei, YUAN Shiyi, HU Yongle, et al. Re-vaporization and retrograde vaporization of the liquid condensate[J]. Petroleum Exploration and Development, 2004, 31(2): 122-124.
11 傅秀娟, 孙志道, 刘菊, 等. 花场近临界油气藏流体相态和开采特征[J]. 石油学报, 2007, 28(6): 96-98.
  FU Xiujuan, SUN Zhidao, LIU Ju, et al. Phase behavior of fluid and development characteristics of Huachang near-critical hydrocarbon reservoir[J]. Acta Petrolei Sinica, 2007, 28(6): 96-98.
12 张雷, 李宏远, 吴浩君, 等. 高倾角近临界油气藏流体及开发特征研究[J]. 特种油气藏, 2017, 24(3): 100-104.
  ZHANG Lei, LI Hongyuan, WU Haojun, et al. Fluid and development characteristics of near critical oil and gas reservoirs with high dip angle[J]. Special Oil & Gas Reservoirs, 2017, 24(3): 100-104.
13 陈卫东, 郭天民. 近临界油气藏流体相行为研究的现状[J]. 石油勘探与开发, 1996, 23(1): 76-79.
  CHEN Weidong, GUO Tianmin. A review of experiment and classical model for near-critical point fluid phase action in reservoirs [J]. Petroleum Exploration and Development, 1996, 23(1): 76-79.
14 李二鹏, 唐永亮, 李鹏冲, 等. 近临界凝析气藏相态特征与开发方式研究[J]. 科学技术与工程, 2014, 14(5): 223-226.
  LI Erpeng, TANG Yongliang, LI Pengchong, et al. The research on phase behavior and development scheme of near-critical gas condensate reservoir[J]. Science Technology and Engineering, 2014, 14(5): 223-226.
15 郜国喜, 袁士义, 宋文杰, 等. 超压凝析气藏的流体相态和物理性质[J]. 石油学报, 2004, 25(4): 71-74.
  GAO Guoxi, YUAN Shiyi, SONG Wenjie, et al. Phase behavior and properties of high pressure gas condensate[J]. Acta Petrolei Sinica, 2004, 25(4): 71-74.
16 Мирзажанзаде А Х. 天然气开采工艺[M]. 北京: 石油工业出版社, 1993.
  Мирзажанзаде А Х. Natural gas extraction process[M]. Beijing: Petroleum Industry Press, 1993.
17 罗凯, 钟太贤. 试论近临界凝析气在PVT筒中的分层现象[J]. 石油勘探与开发, 1999, 26(1): 68-70.
  LUO Kai, ZHONG Taixian. A discussion on the layering of near-critical gas condensate in PVT cell[J]. Petroleum Exploration and Development, 1999, 26(1): 68-70.
18 马龙杰, 胡文革, 何新明, 等. 顺北油气田二区断控缝洞结构凝析气藏重力分异特征: 以4号断裂带为例[J]. 油气地质与采收率, 2025, 32(1): 1-16.
  MA Longjie, HU Wenge, HE Xinming, et al. Gravitational differentiation characteristics of condensate gas reservoir with fault-controlled fracture-cavity structure in second block of Shunbei Oil and Gas Field: A case study of No.4 fault zone[J]. Petroleum Geology and Recovery Efficiency, 2025, 32(1): 1-16.
19 袁锦亮. 凝析气藏非平衡压降相态实验研究[J]. 石化技术, 2019, 26(8): 104-105.
  YUAN Jinliang. Experimental study on non-equilibrium pressure drop phase behavior of condensate gas reservoir[J]. Petrochemical Industry Technology, 2019, 26(8): 104-105.
20 王武超, 吴克柳, 陈掌星, 等. 缓解凝析气井反凝析污染的非平衡压降法[J]. 石油学报, 2022, 43(5): 719-726.
  WANG Wuchao, WU Keliu, CHEN Zhangxing, et al. Non-equilibrium pressure drop method for alleviating retrograde condensate effect on gas condensate well deliverability[J]. Acta Petrolei Sinica, 2022, 43(5): 719-726.
21 朱忠谦. 牙哈凝析气藏二次注气抑制反凝析机理及相态特征[J]. 天然气工业, 2015, 35(5): 60-65.
  ZHU Zhongqian. Mechanism and phase behavior of retrograde condensation inhibition by secondary gas injection in the Yaha condensate gas reservoir[J]. Natural Gas Industry, 2015, 35(5): 60-65.
22 孙扬. 天然气藏超临界CO2埋存及提高天然气采收率机理[D]. 成都: 西南石油大学, 2012.
  SUN Yang. Mechanism of supercritical-CO2 storage with enhanced gas recovery in the natural gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2012.
23 侯大力, 罗平亚, 孙雷, 等. 近临界凝析气藏动态相态行为[J]. 大庆石油地质与开发, 2014, 33(1): 86-91.
  HOU Dali, LUO Pingya, SUN Lei, et al. Dynamic phase behaviors of a near-critical condensate gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(1): 86-91.
24 JIA Y, SHI Y Q, HUANG L, et al. The vapour-vapour interface observation and appraisement of a gas-condensate/supercritical CO2 system[J]. Scientific Reports, 2018, 8(1): 1-12.
25 胡伟, 徐婷, 杨阳, 等. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053.
  HU Wei, XU Ting, YANG Yang, et al. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 1044-1053.
26 王艳, 徐进良, 李文. 不同种类超临界流体异质结构及相变分析[J]. 化工学报, 2021, 72(4): 1906-1919.
  WANG Yan, XU Jinliang, LI Wen. Heterogeneous structure and phase change analysis of different kinds of supercritical fluids[J]. CIESC Journal, 2021, 72(4): 1906-1919.
27 刘旻昀, 黄彦平, 唐佳, 等. 超临界流体物性畸变特性的多尺度研究[J]. 原子能科学技术, 2021, 55(11): 1921-1929.
  LIU Minyun, HUANG Yanping, TANG Jia, et al. Multi-scale study on property distortion mechanism of supercritical fluid[J]. Atomic Energy Science and Technology, 2021, 55(11): 1921-1929.
28 赵一凡, 吴笛, 王佳, 等. 二氧化碳超临界相变过程中Rayleigh–Bénard对流的实验研究[J]. 实验流体力学, 2023, 37(5): 101-110.
  ZHAO Yifan, WU Di, WANG Jia, et al. Experimental study on Rayleigh–Bénard convection during supercritical phase transition of carbon dioxide[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 101-110.
29 朱自强. 超临界流体技术: 原理和应用[M]. 北京: 化学工业出版社, 2000.
  ZHU Ziqiang. Supercritical fluid technology: Principle and application[M]. Beijing: Chemical Industry Press, 2000.
30 王传远, 杜建国, 刘巍, 等. 超临界流体的地质意义[J]. 西北地质, 2005, 38(2): 49-53.
  WANG Chuanyuan, DU Jianguo, LIU Wei, et al. Geological applications of supercritical fluids[J]. Northwestern Geology, 2005, 38(2): 49-53.
文章导航

/