油气藏评价与开发 >
2025 , Vol. 15 >Issue 3: 500 - 507
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.017
基于改进饥饿游戏搜索算法的CO2水气交替驱注入参数优化
收稿日期: 2025-01-06
网络出版日期: 2025-05-28
基金资助
国家重点研发计划项目“区域二氧化碳捕集与封存关键技术研发与示范”(2022YFE0206800)
Optimization of CO2 water-alternating-gas injection parameters based on an improved hunger game search algorithm
Received date: 2025-01-06
Online published: 2025-05-28
CO2驱是目前低渗透油藏提高采收率的重要手段,但受油藏非均质性影响,长期注气极易导致CO2气窜,使得油藏中存在大量剩余油,极大影响CO2驱开发效果。CO2水气交替驱(CO2 WAG)是一种抑制低渗油田CO2气窜的有效技术,其实施过程中涉及注入速度、段塞大小和气水比等众多注入参数,不合理的注入参数难以发挥其提高原油采收率作用。传统油藏数值模拟方法确定最优注入参数方案费时费力,成本高,大型油田多井复杂注入参数组合下甚至难以实现。该研究将饥饿游戏搜索算法引入CO2水气交替驱注入参数优化过程,并利用混沌映射函数提高其初始注入参数取值的随机性和多样性,形成一种新的混沌映射函数改进饥饿游戏搜索算法,实现算法与油藏数值模拟软件的协同智能优化,提高典型油田CO2水气交替驱注入参数优化的精度和效率。研究表明:与Logistic、Gussia和Singer混沌映射函数相比,Tent混沌映射函数所得混沌值和频数分布更加均匀,适合于改进饥饿游戏搜索算法。Tent混沌映射函数改进饥饿游戏搜索算法是一种有效的CO2水气交替驱注入参数优化方法。该算法所得CO2水气交替驱最优注入参数方案累积产油量为34.974×104 m3,比饥饿游戏搜索算法所得累积产油量增加0.213×104 m3,比现有CO2水气交替驱注入参数方案增加5.820×104 m3,为现场CO2水气交替驱高效实施提供了有效技术手段。
吴公益 , 孙宇新 , 孙晓飞 , 姬洪明 , 张艳玉 . 基于改进饥饿游戏搜索算法的CO2水气交替驱注入参数优化[J]. 油气藏评价与开发, 2025 , 15(3) : 500 -507 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.017
CO2 flooding is an important method to enhance oil recovery in low-permeability reservoirs. However, due to the heterogeneity of the reservoir, long-term CO2 injection can easily lead to CO2 gas channeling, leaving a large amount of residual oil in the reservoir, which severely impacts the effectiveness of CO2 flooding. CO2-water-alternating-gas flooding (CO2 WAG) is an effective technique to suppress CO2 gas channeling in low-permeability oilfields. During the implementation of CO2 WAG, numerous injection parameters such as injection rate, slug size, and gas-water ratio are involved. Unreasonable injection parameters make it difficult to achieve improved oil recovery. Traditional reservoir numerical simulation methods for determining optimal injection parameters are time-consuming, labor-intensive, and costly, and may be unfeasible in large oilfields with complex multi-well injection parameter combinations. The hunger game search algorithm was introduced to optimize the injection parameters for CO2 WAG, with the addition of chaotic mapping functions to enhance the randomness and diversity of initial injection parameter values. This new approach formed an improved hunger game search algorithm based on chaotic mapping functions, allowing for collaborative intelligent optimization between the algorithm and reservoir simulation software. This method enhanced the accuracy and efficiency of CO2 WAG injection parameter optimization for typical oilfields. Compared to the Logistic, Gaussian, and Singer chaotic mapping functions, the Tent chaotic mapping function resulted in more evenly distributed chaotic values and frequency distributions, making it a better choice for improving the hunger game search algorithm. The hunger game search algorithm improved by the Tent chaotic mapping function is an effective method for optimizing CO2 WAG injection parameters. The optimal CO2 WAG injection parameters derived from this approach lead to a cumulative oil production of 34.974×104 m³, a 0.213×104 m³ increase over the results from the Hunger Game Search algorithm, and 5.820×104 m³ more than the current CO2 WAG injection parameter scheme. This approach provides an effective technical solution for the efficient implementation of CO2 WAG in the field.
1 | 周国梁. 低渗透油藏储层改造条件下CO2驱油提高采收率研究[D]. 淮南: 安徽理工大学, 2024. |
ZHOU Guoliang. Study on the safe enhancement oil recovery by CO2 flooding in reformed low permeability reservoir[D]. Huainan: Anhui University of Science and Technology, 2024. | |
2 | 王石头, 马国伟, 郎庆利, 等. 低渗透裂缝性油藏CO2驱气窜形成机理及防治技术研究[J]. 能源化工, 2022, 43(3): 29-34. |
WANG Shitou, MA Guowei, LANG Qingli, et al. Study on formation mechanism and prevention technology of gas channeling by CO2 flooding in low permeability fractured reservoirs[J]. Energy Chemical Industry, 2022, 43(3): 29-34. | |
3 | 孙成岩. CO2驱后水气交替注入驱替特征及剩余油启动机制[J]. 大庆石油地质与开发, 2024, 43(1): 52-58. |
SUN Chengyan. Displacement characteristics and remaining oil startup mechanism of WAG after CO2 flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(1): 52-58. | |
4 | 涂永易. CO2水气交替注入对低渗油藏采收率的影响规律研究[D]. 大庆: 东北石油大学, 2023. |
TU Yongyi. Study on the influence law of CO2 water alternating gas on the recovery efficiency of low permeability reservoir[D]. Daqing: Northeast Petroleum University, 2023. | |
5 | 赵彦清. 饥饿游戏搜索算法的改进与应用研究[D]. 桂林: 桂林理工大学, 2024. |
ZHAO Yanqing. Study on improvement and application of hunger games search algorithm[D]. Guilin:Guilin University Of Technology, 2024. | |
6 | 陈洪芳, 吴欢, 王子帅, 等. 基于改进粒子群算法的三坐标测量机最佳测量区域评价方法[J]. 仪器仪表学报, 2024, 45(11): 197-205. |
CHEN Hongfang, WU Huan, WANG Zishuai, et al. An Evaluation method for optimal measurement region of coordinate measuring machines based on improved particle swarm optimization algorithm[J]. Chinese Journal of Scientific Instrument, 2024, 45(11): 197-205. | |
7 | 吴金龙, 高楚珊, 唐小波. 基于遗传模拟退火算法的无线电能传输系统[J]. 电子测量技术, 2024, 47(22): 19-24. |
WU Jinlong, GAO Chushan, TANG Xiaobo. Wireless power transfer system based on genetic simulation annealing algorithm[J]. Electronic Measurement Technology, 2024, 47(22): 19-24. | |
8 | 任明, 汪志锋, 徐洁, 等. 基于遗传算法在反应釜模糊PID控制中的优化[J/OL]. 自动化技术与应用, 1-7[2025-02-17]. . |
REN Ming, WANG Zhifeng, XU Jie, et al. Genetic algorithm based optimization in reaction kettle fuzzy PID control[J/OL]. Techniques of Automation and Applications, 1-7[2025-02-17]. . | |
9 | 李嵘, 王晓瑜. 基于分布式PSODE算法的太阳能供暖系统节能控制方法[J]. 计算技术与自动化, 2024, 43(3): 21-25. |
LI Rong, WANG Xiaoyu. Energy-saving control method of solar energy heating system based on distributed PSODE algorithm[J]. Computing Technology and Automation, 2024, 43(3): 21-25. | |
10 | 杜礼明, 李永进, 李建. 基于遗传算法的磁悬浮列车升力翼的翼型及外形结构优化[J]. 科学技术与工程, 2024, 24(29): 12715-12722. |
DU Liming, LI Yongjin, LI Jian. Genetic algorithm-based optimization of airfoil and shape structure of lifting wing for magnetic levitation train[J]. Science Technology and Engineering, 2024, 24(29): 12715-12722. | |
11 | 赵冬阳. 基于多辅助融合任务的多模态青光眼分级算法研究[D]. 成都: 电子科技大学, 2024. |
ZHAO Dongyang. The research of multimodal glaucoma grading algorithm based on Multi-Auxiliary fusion tasks[D]. Chendu: University of Electronic Science and Technology of China, 2024. | |
12 | 邵子龙. 基于智能算法的CO2驱油埋存一体化工程水气交替方案优化研究[D]. 长春: 吉林大学, 2023. |
SHAO Zilong. Optimization of water-alternating-gas scheme in CO2 flooding and storage integration project based on intelligent algorithm[D]. Changchun: Jilin University, 2023. | |
13 | YANG Y, CHEN H, HEIDARI A A, et al. Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J]. Expert Systems with Applications, 2021, 177: 114864. |
14 | IZCI D, EKINCI S, EKER E, et al. Augmented hunger games search algorithm using logarithmic spiral opposition-based learning for function optimization and controller design[J]. Journal of King Sand University Engineering Sciences, 2024, 36(5): 330-338. |
15 | MA B J, LIU S, HEIDARI A A. Multi-strategy ensemble binary hunger games search for feature selection[J]. Knowledge-Based Systems, 2022, 248: 108787. |
16 | YANG Y, WU Y, YUAN H, et al. Nodes clustering and multi-hop routing protocol optimization using hybrid chimp optimization and hunger games search algorithms for sustainable energy efficient underwater wireless sensor networks[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100731. |
17 | YU S, HEIDARI A A, HE C, et al. Parameter estimation of static solar photovoltaic models using Laplacian Nelder-Mead hunger games search[J]. Solar Energy, 2022, 242: 79-104. |
18 | LIANG R, LE-HUNG T, NGUYEN-THOI T. Energy consumption prediction of air-conditioning systems in eco-buildings using hunger games search optimization-based artificial neural network model[J]. Journal of Building Engineering, 2022, 59: 105087. |
19 | 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2): 179-182. |
SHAN Liang, QIANG Hao, LI Jun, et al. Chaotic optimization algorithm based on tent map[J]. Control and Decision, 2005, 20(2): 179-182. | |
20 | 黄敬宇. 融合t分布和Tent混沌映射的麻雀搜索算法研究[D]. 兰州: 兰州大学, 2021. |
HUANG Jingyu. Research on sparrow search algorithm based on fusion of t-distribution and tent chaotic mapping[D]. Lanzhou: Lanzhou University, 2021. | |
21 | 崔文璇, 张祎彤, 张梅洁. 基于Tent-Chebyshev切换的粒子群优化算法[J]. 航空计算技术, 2023, 53(5): 15-19. |
CUI Wenxuan, ZHANG Yitong, ZHANG Meijie. Particle swarm optimization algorithm based on Tent-Chebyshev switching mapping strategy[J]. Aeronautical Computing Technique, 2023, 53(5): 15-19. | |
22 | 陈嘉兴, 刘扬, 刘晓茜, 等. Logistic混沌映射与差分进化改进人工蜂群优化水下定位[J]. 工程科学与技术, 2025, 57(1): 57-67. |
CHEN Jiaxing, LIU Yang, LIU Xiaoqian, et al. Improved artificial bee colony optimization underwater localization algorithm by Logistic chaos mapping and differential evolution[J]. Advanced Engineering Sciences, 2025, 57(1): 57-67. | |
23 | 楚哲宇, 唐秀英, 谭庆, 等. 基于逐维高斯变异的混沌麻雀优化算法[J]. 自动化应用, 2021, 62(8): 60-63. |
CHU Zheyu, TANG Xiuying, TAN Qing, et al. Chaos sparrow optimization algorithm based on dimensional Gaussian mutation[J]. Automation Application, 2021, 62(8): 60-63. | |
24 | 谢锋云, 王阳, 孙恩广, 等. 基于GMFDE与Singer-ELM的三相异步电机故障诊断[J]. 铁道科学与工程学报, 2024, 21(10): 4357-4369. |
XIE Fengyun, WANG Yang, SUN Enguang, et al. Fault diagnosis of three-phase asynchronous motor based on GMFDE and Singer-ELM[J]. Journal of Railway Science and Engineering, 2024, 21(10): 4357-4369. |
/
〈 |
|
〉 |