工程工艺

CO2封存泄漏立体监测技术的探索与应用——以苏北盆地张家垛油田为例

  • 陈兴明 ,
  • 钱洋慧 ,
  • 陈忠志 ,
  • 陈子凡
展开
  • 1.中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
    2.中国石化华东石油局液碳公司,江苏 南京 210019
    3.中国石化华东油气分公司,江苏 南京 210019
    4.南京钢铁集团有限公司,江苏 南京 211500
陈兴明(1971—),男,本科,高级工程师,从事CO2 环保捕集与应用、油气田开发技术服务等工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail:chenxm.hdsj@sinopec.com

收稿日期: 2024-08-14

  网络出版日期: 2025-05-28

基金资助

江苏省科技项目“苏北地区二十万吨级CCUS重大科技示范工程”(BE2022603);中国石化科技部项目“苏北CCUS-EOR一体化技术研究”(P21107)

Exploration and application of 3D CO2 storage leakage monitoring technology: A case study of Zhangjiaduo oilfield in Subei Basin

  • CHEN Xingming ,
  • QIAN Yanghui ,
  • CHEN Zhongzhi ,
  • CHEN Zifan
Expand
  • 1. Research Institute of Exploration and Development, Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China
    2. Sinopec East China Petroleum Bureau Liquid Carbon Company, Nanjing, Jiangsu 210019, China
    3. Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China
    4. Nanjing Steel Group Co. , Ltd. , Nanjing, Jiangsu 210035, China

Received date: 2024-08-14

  Online published: 2025-05-28

摘要

CO2驱油技术作为CO2捕集、利用与封存技术的重要组成部分,在提高石油采收率的同时可实现规模化封存,被国内外广泛应用。然而,该技术在注入、驱油封存、采出等环节中存在多种泄漏风险。目前,国内外相关项目在监测方面多集中于储层和盖层,缺乏系统性的生态环境监测。张家垛油田自2014年开始注CO2开发,累计注气量19.53×104 t,累计增油量5.16×104 t,提高采收率15.22%,阶段换油率3.78,取得了显著的开采成效。以张家垛油田的CO2驱油封存项目为例,在分析CO2驱油与封存泄漏可能性的基础上,建立了涵盖地下水体、土壤、大气的全方位和多指标的CO2泄漏监测体系,实时监测并预警CO2泄漏信息。根据一年多的连续监测,结果表明:张家垛地下水中CO2质量浓度稳定保持在5 712 mg/m3左右,pH值接近中性,且电导率稳定在1.343~1.347 µS/cm;土壤CO2质量浓度、pH值、电导率均相对稳定,3个层位的大气CO2质量浓度呈现周期性变化且与土壤的变化趋势一致,平均介于730~780 mg/m3,指标接近低纬度区域常规大气CO2质量浓度。综合多项监测指标结果,表明张家垛油田目前并未发生CO2泄漏情况。该监测体系的成功应用不仅为张家垛油田的持续开发提供了科学依据,也为其他类似项目在环境监测方面提供了经验和借鉴,进一步推动了CO2驱油技术的安全和可持续发展。

本文引用格式

陈兴明 , 钱洋慧 , 陈忠志 , 陈子凡 . CO2封存泄漏立体监测技术的探索与应用——以苏北盆地张家垛油田为例[J]. 油气藏评价与开发, 2025 , 15(3) : 508 -514 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.018

Abstract

As a critical component of Carbon Capture, Utilization, and Storage (CCUS) technologies, CO₂-enhanced oil recovery (CO2-EOR) has been widely used both domestically and internationally. This technology not only improves oil recovery but also enables large-scale CO₂ sequestration. However, potential CO₂ leakage risks exist throughout the processes of CO2 injection, displacement, sequestration, and production. Existing monitoring practices in domestic and international projects primarily focus on reservoirs and caprocks, with limited attention paid to systematic ecological environmental monitoring. CO₂-EOR development commenced in the Zhangjiaduo oilfield in 2014. As of now, a cumulative total of 195,300 tonnes of CO2 has been injected, resulting in an incremental oil production of 51,600 tonnes. The oil recovery rate was improved by 15.22%, and the phase oil replacement ratio reached 3.78, indicating remarkable stimulation effectiveness. Based on the Zhangjiaduo CO₂-EOR and sequestration project, a comprehensive 3D monitoring system was developed, integrating multiple indicators across groundwater, soil, and atmosphere to enable real-time monitoring and early warning of CO₂ leakage. After over one year of continuous monitoring, the results showed that the CO2 mass concentration in Zhangjiaduo groundwater remained stable at about 5,712 mg/m3, with a near-neutral pH and stable electrical conductivity ranging from 1.343 to 1.347 μS/cm. The CO2 mass concentration, pH, and conductivity in the soil also remained relatively stable. Atmospheric CO2 concentrations at three different altitudes exhibited periodic fluctuations consistent with soil data, averaging between 730 and 780 mg/m3, which aligns with typical atmospheric CO2 levels in low-latitude regions. These multi-parameter monitoring results indicate that no CO₂ leakage has occurred in the Zhangjiaduo oilfield to date. The successful application of this monitoring system has provided robust scientific support for the sustained development of the field. Moreover, it offers practical insights and references for environmental monitoring in similar projects, contributing to the safe and sustainable advancement of CO2-EOR technologies.

参考文献

1 李阳, 王锐, 赵清民, 等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报, 2023, 8(4): 391-397.
  LI Yang, WANG Rui, ZHAO Qingmin, et al. Status and prospects for CO2 capture, utilization and storage technology in China[J]. Petroleum Science Bulletin, 2023, 8(4): 391-397.
2 叶晓东, 陈军, 陈曦, 等. "双碳"目标下的中国CCUS技术挑战及对策[J]. 油气藏评价与开发, 2024, 14(1): 1-9.
  YE Xiaodong, CHEN Jun, CHEN Xi, et al. China's CCUS technology challenges and countermeasures under "double carbon" target[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 1-9.
3 向勇, 侯力, 杜猛, 等. 中国CCUS-EOR技术研究进展及发展前景[J]. 油气地质与采收率, 2023, 30(2): 1-17.
  XIANG Yong, HOU Li, DU Meng, et al. Research progress and development prospect of CCUS-EOR technologies in China[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 1-17.
4 王璐, 刘森, 姬泽敏, 等. CO2-EOR过程中油藏储层构造封存能力的模拟[J]. 非常规油气, 2024, 11(2): 99-107.
  WANG Lu, LIU Sen, JI Zemin, et al. Simulation of reservoir structural storage capacity in CO2-EOR process[J]. Unconventional Oil & Gas, 2024, 11(2): 99-107.
5 WHITTAKER S, ROSTRON B, HAWKES C, et al. A decade of CO2 injection into depleting oil fields: Monitoring and research activities of the IEA GHG Weyburn-Midale CO2 monitoring and storage project[J]. Energy Procedia, 2011, 4: 6069-6076.
6 杨皝, 杨镱婷, 陈磊, 等. 准噶尔盆地深部咸水层CO2地质封存适宜条件分析[J]. 天然气勘探与开发, 2024, 47(6): 105-115.
  YANG Huang, YANG Yiting, CHEN Lei, et al. Available conditions for geological storage of CO2 in deep saline aquifers, Junggar Basin[J]. Natural Gas Exploration and Development, 2024, 47(6): 105-115.
7 李保振, 田虓丰, 唐恩高, 等. 南海典型枯竭气藏CO2封存潜力评估与展望[J]. 天然气勘探与开发, 2024, 47(6): 116-121.
  LI Baozhen, TIAN Xiaofeng, TANG En'gao, et al. Potential assessment and outlook on CO2 storage in classic depleted gas reservoirs of the South China Sea[J]. Natural Gas Exploration and Development, 2024, 47(6): 116-121.
8 王维波, 汤瑞佳, 江绍静, 等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气, 2021, 8(2): 1-7.
  WANG Weibo, TANG Ruijia, JIANG Shaojing, et al. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas, 2021, 8(2): 1-7.
9 张宗檩, 吕广忠, 王杰. 胜利油田CCUS技术及应用[J]. 油气藏评价与开发, 2021, 11(6): 812-822.
  ZHANG Zonglin, Guangzhong LYU, WANG Jie. CCUS and its application in Shengli Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 812-822.
10 任柏璋. 张家垛油田阜三段油藏CO2驱油机理分析[J]. 石化技术, 2020, 27(4): 97-98.
  REN Bozhang. Analysis of CO2 displacement mechanism in the third member of Fujiang formation in Zhangjiaduo oilfield[J]. Petrochemical Industry Technology, 2020, 27(4): 97-98.
11 王展鹏, 刘琦, 叶航, 等. CO2地质封存泄漏监测技术研究进展[J]. 环境工程, 2023, 41(10): 69-81.
  WANG Zhanpeng, LIU Qi, YE Hang, et al. Research progress on CO2 geological storage leakage and monitoring[J]. Environmental Engineering, 2023, 41(10): 69-81.
12 汤沭成. 黄土塬地区CO2驱油封存泄漏地表监测体系研究[D]. 北京: 华北电力大学(北京), 2020.
  TANG Shucheng. Study on surface monitoring system for CO2 leakage of CO2-EOR storage in loess tableland region[D]. Beijing: North China Electric Power University(Beijing), 2020.
13 黄倩, 田鸣, 赛亚尔·库西马克, 等. 碳埋存环境下油井水泥耐CO2腐蚀研究[J]. 天然气勘探与开发, 2024, 47(5): 103-110.
  HUANG Qian, TIAN Ming, SAIYAER Kuximake, et al. Resistance of cement to CO2 corrosion in oil producers under carbon storage[J]. Natural Gas Exploration and Development, 2024, 47(5): 103-110.
14 范劲, 郭艳, 李茂森, 等. 四川盆地抗CO2污染高密度水基钻井液[J]. 天然气勘探与开发, 2024, 47(4): 99-105.
  FAN Jin, GUO Yan, LI Maosen, et al. High-density water-based drilling fluid with resistance to CO2 contamination and its application to Sichuan Basin[J]. Natural Gas Exploration and Development, 2024, 47(4): 99-105.
15 刘瑛, 王香增, 杨红, 等. CO2驱油与封存安全监测体系的构建及实践: 以黄土塬地区特低渗透油藏为例[J]. 油气地质与采收率, 2023, 30(2): 144-152.
  LIU Ying, WANG Xiangzeng, YANG Hong, et al. Establishment and practice of safety monitoring system during CO2 flooding and storage: A case study of ultra-low permeability reservoirs in loess tableland[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 144-152.
16 薛璐, 马俊杰, 王浩璠, 等. 鄂尔多斯盆地CCS-EOR项目CO2泄漏环境风险评估[J]. 环境监测管理与技术, 2024, 36(2): 64-68.
  XUE Lu, MA Junjie, WANG Haofan, et al. Environmental risk assessment of CO2 leakage from CCS-EOR project in Ordos Basin[J]. The Administration and Technique of Environmental Monitoring, 2024, 36(2): 64-68.
17 王昊, 林千果, 郭军红, 等. 黄土塬地区CO2驱油封存泄漏地下水监测体系研究[J]. 环境工程, 2021, 39(8): 217-226.
  WANG Hao, LIN Qianguo, GUO Junhong, et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in loess tableland region[J]. Environmental Engineering, 2021, 39(8): 217-226.
18 关笑坤. 二氧化碳在土壤包气带中的运移规律及对环境影响研究[D]. 西安: 长安大学, 2014.
  GUAN Xiaokun. Carbon dioxide transport in the unsaturated soil and its environmental impact[D]. Xi'an: Chang'an University, 2014.
19 朱前林, 范智涵, 王闯, 等. CO2封存泄漏大气扩散规律及监测方案: 以延长油田CO2-EOR工程为例[J]. 安全与环境学报, 2018, 18(4): 1432-1439.
  ZHU Qianlin, FAN Zhihan, WANG Chuang, et al. Dispersion features of the atmospheric monitoring program for CO2 leakage: A case study sample of the CO2-EOR pilot project of Yanchang Oil Field[J]. Journal of Safety and Environment, 2018, 18(4): 1432-1439.
20 张志升, 吴向阳, 吴倩, 等. CO2驱油封存泄漏风险管理系统及应用研究[J]. 油气藏评价与开发, 2024, 14(1): 91-101.
  ZHANG Zhisheng, WU Xiangyang, WU Qian, et al. Risk management system and application of CO2 flooding and sequestration leakage[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 91-101.
21 毛伟, 郁洁, 李文西, 等. 近40年江苏农田土壤pH时空变化特征及驱动因素[J]. 植物营养与肥料学报, 2023, 29(2): 264-272.
  MAO Wei, YU Jie, LI Wenxi, et al. Spatial and temporal variation of cropland pH and the driving factors in Jiangsu over the past 40 years[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 264-272.
22 李珂, 韩小俊, 张晓斌, 等. CO2地质封存选址关键要素评估[J]. 天然气勘探与开发, 2024, 47(5): 95-102.
  LI Ke, HAN Xiaojun, ZHANG Xiaobin, et al. Evaluating the key controls on CO2 geologic storage site[J]. Natural Gas Exploration and Development, 2024, 47(5): 95-102.
23 易志刚, 蚁伟民, 丁明懋, 等. 鼎湖山自然保护区土壤有机碳、微生物生物量碳和土壤CO2浓度垂直分布[J]. 生态环境, 2006, 15(3): 611-615.
  YI Zhigang, YI Weimin, DING Mingmao, et al. Vertical distribution of soil organic carbon, soil microbial biomass and soil CO2 concentration in Dinghushan Biosphere Reserve[J]. Ecology and Environmental Sciences, 2006, 15(3): 611-615.
文章导航

/