油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (6): 8-16.doi: 10.13809/j.cnki.cn32-1825/te.2020.06.002
收稿日期:
2020-10-29
出版日期:
2020-12-26
发布日期:
2021-01-07
作者简介:
曹绪龙(1964—),男,博士,教授级高级工程师,本刊第二届编委会委员,主要从事油田提高采收率技术研究。地址:山东省东营市东营区聊城路2号勘探开发研究院,邮政编码:257000。E-mail: 基金资助:
CAO Xulong(),JI Yanfeng,ZHU Yangwen,ZHAO Fangjian
Received:
2020-10-29
Online:
2020-12-26
Published:
2021-01-07
摘要:
随着我国对石油的需求量不断增加,对油气田的进一步挖潜显得至关重要。化学驱技术是提高采收率的重要技术之一,而聚合物驱作为最主要的化学驱提高采收率方法,在矿场上已经得到了广泛应用,并取得良好的驱油效果。该文通过对聚合物驱的基本原理以及各种驱油用聚合物的发展现状进行综述,对聚合物驱的矿场应用效果进行总结,展望了聚合物驱在高温高盐等苛刻油藏环境下的发展方向。通过综述可以看出,虽然耐温抗盐共聚物、速溶聚合物、两亲聚合物等功能型聚合物已成功研发,但应用于矿场的聚合物类型仍然有限,如何将新型聚合物的研发成果应用于现场提高采收率是重点发展方向。随着不同聚合物类型的研发,对聚合物驱油机理的研究需要继续深入。
中图分类号:
曹绪龙,季岩峰,祝仰文,赵方剑. 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发, 2020, 10(6): 8-16.
CAO Xulong,JI Yanfeng,ZHU Yangwen,ZHAO Fangjian. Research advance and technology outlook of polymer flooding[J]. Reservoir Evaluation and Development, 2020, 10(6): 8-16.
表1
国内外一些高温高盐油藏聚合物驱矿场试验"
国家 | 油田 | 开始时间 | 岩性 | 聚合物类型 | 聚合物浓度/(mg·L-1) | 注入孔隙体积 倍数 | 注入 方式 | 结果评价 |
---|---|---|---|---|---|---|---|---|
印度 | Sanand | 1985年04月 | 砂岩 | 丙烯酰胺 | 800 | 0.15 | 梯式 | 提高采收率11 %,投资回报率28 % |
德国 | Edesse-Nord | 1985年10月 | 砂岩 | 黄原胶聚合物 | 800~1 000 | 0.20 | 一体 | 增产5 %~7 %,经济成功 |
美国 | White Castle | 1986年01月 | 砂岩 | 聚丙烯酰胺 | 500 | 0.40 | 一体 | 未评价 |
德国 | V-K | 1989年12月 | 砂岩 | 黄原胶聚合物 | 500~600 | 0.40 | 梯度 | 提高采收率6 %,经济成功 |
德国 | Ploen-ost | 1989年05月 | 砂岩 | 合成聚合物 | 1 000 | 0.60 | 梯度 | 大幅增产,经济成功 |
美国 | Adon Road | 1990年10月 | 砂岩 | 胶态分散凝胶 | 600 | 0.30 | 梯度 | 提高采收率18 %,0.72美元/桶 |
中国 | 双河油田 | 1994年02月 | 砂岩 | 聚丙烯酰胺 | 800 | 梯度 | 提高采收率10 %,吨油成本390元/t | |
中国 | 胜利油田胜二区 | 2012年11月 | 砂岩 | 聚丙烯酰胺 | 2 200 | 0.65 | 梯式 | 提高采收率7.3 % |
[1] | 钱兴坤, 刘朝全, 姜学峰, 等. 全球石油市场艰难平衡发展风险加大—2019年国内外油气行业发展概述及2020年展望[J]. 国际石油经济, 2020,27(1):2-9. |
QIAN X K, LIU Z Q, JIANG X F, et al. Overview of the domestic and foreign oil and gas industry development in 2019 and outlook for 2020[J]. International Petroleum Economics, 2020,27(1):2-9. | |
[2] | 阿依加马力·艾尼. 高含水油田水驱聚驱后剩余油分布特征研究及提高采收率对策[D]. 青岛:中国石油大学(华东), 2017. |
AINI A. Study on residual oil distribution after water and polymer flooding for high water cut field and the method of improving oil recovery[D]. Qingdao: China University of Petroleum(East China), 2017. | |
[3] | MOGENSENA K, MASALMEHA S. A review of EOR techniques for carbonate reservoirs in challenging geological settings[J]. Journal of Petroleum Science and Engineering, 2020,195:1-13. |
[4] |
SCHEXNAYDER P, BAUDOIN N, CHIRDON W M. Enhanced oil recovery from denatured algal biomass: Synergy between conventional and emergent fuels[J]. Fuel, 2020.
doi: 10.1016/j.fuel.2010.09.047 pmid: 24092947 |
[5] | 王斌, 周迅, 王敏, 等. 三次采油技术在中原油田的应用进展[J]. 油田化学, 2020,37(3):552-556. |
WANG B, ZHOU X, WANG M, et al. Application of tertiary oil recovery technology in Zhongyuan Oilfield[J]. Oilfield Chemistry, 2020,37(3):552-556. | |
[6] | 魏华旭. 三次采油阶段提高采收率的措施[J]. 化学工程与装备, 2020,49(10):105. |
WEI H X. Measures to enhance oil recovery in tertiary oil recovery stage[J]. Chemical Engineering & Equipment, 2020,49(10):105. | |
[7] | 刘玉章. EOR聚合物驱提高采收率技术[M]. 北京: 石油工业出版社, 2006. |
LIU Y Z. EOR Polymer flooding enhanced oil recovery technology[M]. Beijing: Petroleum Industry Press, 2006. | |
[8] | RELLEGADLA S, PRAJAPAT G, AGRAWAL A. Polymers for enhanced oil recovery: Fundamentals and selection criteria[J]. Applied Microbiology & Biotechnology, 2017,101(15):1-16. |
[9] | 侯吉瑞, 陈宇光, 吴璇, 等. 聚合物表面活性剂溶液微观驱油特征[J]. 油田化学, 2020,37(2):292-296. |
HOU J R, CHEN Y G, WU X, et al. Microscopic oil displacement characteristics of polymeric surfactant solution[J]. Oilfield Chemistry, 2020,37(2):292-296. | |
[10] | 金亚杰. 国外聚合物驱油技术研究及应用现状[J]. 非常规油气, 2017,4(1):116-122. |
JIN Y J. Progress in research and application of polymer flooding technology abroad[J]. Unconventional Oil & Gas, 2017,4(1):116-122. | |
[11] | 崔名喆, 张建民, 吴春新, 等. 渤海油田低渗透油藏黏性指进特性分析[J]. 中国石油勘探, 2018,23(5):94-99. |
CUI M Z, ZHANG J M, WU C X, et al. Analysis of viscous fingering characteristics of low permeability reservoirs in Bohai oilfield[J]. China Petroleum Exploration, 2018,23(5):94-99. | |
[12] | ALMANSOUR A O, ALQURAISHI A A, ALHUSSINAN S N, et al. Efficiency pf Enhanced Oil Recovery Using Polymer- ugmented Low Salinity Flooding[J]. Journal of Petroleum Exploration & Production Technology, 2017,7(1):1149-1158. |
[13] | PYE D J. Improved secondary recovery by control of water mobility[J]. Journal of Petroleum Technology, 1964,16(8):911-916. |
[14] | SANDIFORD B B. Laboratory and field studies of water floods using polymer solutions to increase oil recoveries[J]. Journal of Petroleum Technology, 1964,16(8):917-922. |
[15] | 未志杰, 康晓东, 何春百, 等. 非均质稠油油藏聚合物驱吸液剖面变化规律[J]. 科学技术与工程, 2018,18(8):61-66. |
WEI Z J, KANG X D, HE C B, et al. Polymer flood injection conformance behavior of heterogeneous heavy-oil reservoirs[J]. Science Technology and Engineering, 2018,18(8):61-66. | |
[16] | 孙刚. 利用双极化干涉法研究聚合物与原油的相互作用[J]. 油田化学, 2017,34(2):290-295. |
SUN G. Insight into interactions between polymer and crude oil with dual polarization interferometry[J]. Oilfield Chemistry, 2017,34(2):290-295. | |
[17] |
ABEL A, McCORMICK C L. Mechanistic insights into temperature-dependent trithiocarbonate chain-end degradation during the RAFT polymerization of N-arylmethacrylamides[J]. Macromolecules, 2016,49(2):465-474.
doi: 10.1021/acs.macromol.5b02463 |
[18] | 邢恩浩, 陶鑫, 金磊, 等. 阻力系数和残余阻力系数的测定及影响因素的研究[J]. 辽宁化工, 2016,45(3):284-287. |
XING E H, TAO X, JIN L, et al. Determination and influence factors of resistance coefficient and residual resistance coefficient[J]. Liaoning Chemical Industry, 2016,45(3):284-287. | |
[19] | ZHANG H C, GOU S H, ZHOU L H, et al. Synjournal and properties of betaine hydrophobic modified polymer flooding[J]. Applied Chemical Industry, 2019,48(11):2627-2631. |
[20] | KURŞUN I, IPEKOĞLU B, ÇELIK M S, et al. Flocculation and adsorption-desorption mechanism of polymers on albite[J]. Developments in Mineral Processing, 2000,13:24-30. |
[21] | 沈天阳, 徐兆冉. POSS的合成及其在传统聚合物改性中的研究进展[J]. 化工管理, 2018,33(18):29-30. |
SHEN T Y, XU Z R. Synjournal of POSS and its research progress in modification of traditional polymers[J]. Chemical Engineering & Equipment, 2018,33(18):29-30. | |
[22] |
ELHAEIAB R, KHARRATC R, MADANI M. Stability, flocculation, and rheological behavior of silica suspensions-augmented polyacrylamide and the possibility to improve polymer flooding functionality[J]. Journal of Molecular Liquids, 2020.
doi: 10.1016/j.molliq.2017.12.111 pmid: 30546180 |
[23] | YOO H S, KIM H S, SUNG W M, et al. An experimental study on retention characteristics under two-phase flow considering oil saturation in polymer flooding[J]. Journal of Industrial and Engineering Chemistry, 2020,87:120-129. |
[24] | 胡钰灵, 全红平, 黄志宇. 疏水改性黄原胶XG-C16溶液性能及微观结构探究[J]. 应用化工, 2019,48(11):2657-2661. |
HU Y L, QUAN H P, HUANG Z Y. Study on solution properties and microstructure of hydrophobic modified Xanthan gum—XG-C16[J]. Applied Chemical Industry, 2019,48(11):2657-2661. | |
[25] |
XU L, XU G Y, LIU T, et al. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions[J]. Carbohydrate Polymers, 2013,92(1):516-522.
doi: 10.1016/j.carbpol.2012.09.082 pmid: 23218329 |
[26] | 祝仰文. 超高分三元共聚物流变特性及驱油性能[J]. 油气地质与采收率, 2018,25(6):78-83. |
ZHU Y W. Study on rheology and oil displacement properties of ultra high molecular weight terpolymer[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):78-83. | |
[27] | 李新勇, 罗攀登, 刘坤, 等. 含有吗啉基的耐温抗盐聚合物合成及性能[J]. 当代化工, 2020,49(5):838-841. |
LI X Y, LUO P D, LIU K, et al. Synjournal and performance evaluation of salt-resistant and heat-tolerant polymer containing morpholine groups[J]. Contemporary Chemical Industry, 2020,49(5):838-841. | |
[28] | 孙群哲, 宋华, 李锋, 等. 三元驱油用磺化聚丙烯酰胺的合成与性能研究[J]. 化学工业与工程技术, 2014,35(3):41-44. |
SUN Q Z, SONG H, LI F, et al. Study on synjournal and property of terpolymer sulfonated polyacrylamide used in EOR[J]. Journal of Chemical Industry & Engineering, 2014,35(3):41-44. | |
[29] | 尚克剑. 两性聚合物的合成及应用[J]. 新疆化工, 2016,41(1):5-10. |
SHANG K J. Synjournal and application of amphoteric polymers[J]. Xinjiang Chemical Industry, 2016,41(1):5-10. | |
[30] | 伊卓, 刘希, 方昭, 等. 三次采油耐温抗盐聚丙烯酰胺的结构与性能[J]. 石油化工, 2015,44(6):770-777. |
YI Z, LIU X, FANG Z, et al. Structure and properties of temperature-tolerant and salt-resistant polyacrylamide for tertiary oil recovery[J]. Petrochemical Technology, 2015,44(6):770-777. | |
[31] | BERRET J F, CALVET D, COLLET A. Fluorocarbon associative polymers[J]. Current Opinion in Colloid & Interface Science, 2003,8(3):296-306. |
[32] | BAI Y R, SHANG X S, WANG Z B, et al. Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery[J]. Energy & Fuels, 2018,32(6):6713-6725. |
[33] | 王晓藜. 聚丙烯酰胺类疏水缔合聚合物的合成与表征[D]. 济南: 山东大学, 2015. |
WANG X L. Study on synthesis and characterization of hydrophobically associating acrylamide-based copolymers[D]. Jinan: Shandong University, 2015. | |
[34] | DUBIN P L, STRAUSS U P. Hydrophobic hypercoiling in copolymers of maleic acid and alkyl vinyl ethers[J]. Journal of Physical Chemistry, 1970,74(14):2842-2847. |
[35] | MAIA A M S, BORSALI R, BALABAN R C. Comparison between a polyacrylamide and a hydrophobically modified polyacrylamide flood in a sandstone core[J]. Materials Science and Engineering, 2009,29(2):505-509. |
[36] | 马喜平, 廖明飞, 董江洁, 等. 疏水缔合聚合物PADA的合成与性能评价[J]. 应用化工, 2020,49(3):669-673. |
MA X P, LIAO M F, DONG H J, et al. Synjournal and performance evaluation of hydrophobic association polymer PADA[J]. Applied Chemical Industry, 2020,49(3):669-673. | |
[37] | SHARKER K K, TAKESHIMA S, TOYAMA Y, et al. pH- and thermo-responsive behavior of PNIPAM star containing terminal carboxy groups in aqueous solutions[J]. Polymer, 2020: 122735. |
[38] | 刘锐. 超支化缔合聚合物的制备及驱油性能[J]. 西南石油大学学报(自然科学版), 2015,37(2):145-152. |
LIU R. Preparation of hyperbranched association polyacrylamide and its oil displacement properties[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015,37(2):145-152. | |
[39] | LI X E, XU Z, YIN H Y, et al. Comparative studies on enhanced oil recovery: Thermoviscosifying polymer versus polyacrylamide[J]. Energy & Fuels, 2017,31(3):2479-2487. |
[40] |
CHEN Q S, WANG Y, LU Z Y, et al. Thermo-viscosifying polymer used for enhanced oil recovery: Rheological behaviors and core flooding test[J]. Polymer Bulletin, 2013,70(2):391-401.
doi: 10.1007/s00289-012-0798-7 |
[41] |
ROY D, BROOKS W L A, SUMERLIN B S. New directions in thermo-responsive polymers[J]. Chemical Society Reviews, 2013,42(17):7214-7243.
doi: 10.1039/c3cs35499g pmid: 23450220 |
[42] | MOGOLLÓN J L, YOMDO S, SALAZAR A, et al. Maximizing a mature field value by combining polymer flooding, well interventions, and infill drilling[C]// paper SPE-194652-MS presented at the SPE Oil and Gas India Conference and Exhibition, 9-11 April, 2019, Mumbai, India. |
[43] | HOURDET D, L’ALLORET F, AUDEBERT R. Reversible thermo-thickening of aqueous polymer solutions[J]. Polymer, 1994,35(12):2624-2630. |
[44] | WANG Y, FENG Y J, WANG B Q, et al. A novel thermoviscosifying water-soluble polymer: Synjournal and aqueous solution properties[J]. Journal of Applied Polymer Science, 2010,116(6):3516-3524. |
[45] | 郭睿威, 吴大成, 鹿现栋, 等. 热缔合接枝物HPAM-g-PNIPAm的温敏增稠性能[J]. 石油化工, 2003,32(8):690-694. |
GUO R W, WU D C, LU X D, et al. Thermothickening properties of graft copolymer HPAM-g-PNIPAm[J]. Petrochemical Technology, 2003,32(8):690-694. | |
[46] | ZHENG C, CHENG Y, WEI Q, et al. Suspension of surface-modified nano-sio2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017,524(1):169-177. |
[47] | ZHENG C C, HUANG Z H. Self-assembly and regulation of hydrophobic associating polyacrylamide with excellent solubility prepared by aqueous two-phase polymerization[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018,555:621-629. |
[48] | ZHANG X F, YANG H B, WANG P X, et al. Oil-displacement characteristics and EOR mechanism of amphiphilic polymers with two molecular weights[C]// paper SPE-192385-MS presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 23-26 April, 2018, Dammam, Saudi Arabia. |
[49] | 朱洲, 康万利, 杨红斌, 等. 磺基甜菜碱型两亲聚合物的合成及其流变特性[J]. 石油化工高等学校学报, 2017,30(5):32-36. |
ZHU Z, KANG W L, YANG H B, et al. Synjournal and rheological properties of a sulfobetaine amphiphilic polymer[J]. Journal of Petrochemical Universities, 2017,30(5):32-36. | |
[50] | 于斌. 驱油两亲聚合物性能调控方法及增效机理研究[D]. 青岛: 中国石油大学(华东), 2019. |
YU B. Study on property control of amphiphilic polymers for oil displacement and its synergistic mechanism[D]. Qingdao: China University of Petroleum (East China), 2019. | |
[51] | 张超. 延时增粘聚合物增粘特性及运移规律研究[D]. 青岛: 中国石油大学(华东), 2016. |
ZHANG C. Study on Thickening Properties and Migration Law of Delayed Viscosity Increasing Polymer [D]. Qingdao: China University of Petroleum (East China), 2016. | |
[52] | JIANG Z Z, ZHU J R. Cationic polyacrylamide: Synjournal and application in sludge dewatering treatment[J]. Asian Journal of Chemistry, 2014,26(3):629-633. |
[53] | MOE SOE LET K P, MOE SOE LET K P, MANICHAND R N, SERIGHT R S. Polymer flooding a 500-cpoil[C]// paper SPE-154567-MS presented at the SPE Improved Oil Recovery Symposium, 14-18 April, 2012, Tulsa, Oklahoma, USA. |
[54] | 侯巍. 大庆油田三次采油提高采收率技术研究[J]. 化工管理, 2019,34(10):222-224. |
HOU W. Analysis of influencing factors of polymer flooding and application of stratified injection technology in Daqing Oilfield[J]. Chemical Enterprise Management, 2019,34(10):222-224. | |
[55] | LI J R. Experimental investigation and simulation of polymer flooding in high temperature high salinity carbonate reservoirs[D]. Abu Dhabi: The Petroleum Institute, 2015. |
[56] | KAMAL M S, SULTAN A S, AL-MUBAIYEDH U A, et al. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems[J]. Polymer Reviews, 2015,55(3):491-530. |
[57] | SHENG J J, LEONHARDT B, AZRI N. Status of polymer-flooding technology[J]. Journal of Canadian Petroleum Technology, 2015,54(2):116-126. |
[58] | ZHU D W, WEI L M, WANG B Q, et al. Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs[J], Energies, 2014,7(6):3858-3871. |
[59] | 赵方剑, 曹绪龙, 祝仰文, 等. 胜利油区海上油田二元复合驱油体系优选及参数设计[J]. 油气地质与采收率, 2020,27(4):133-139. |
ZHAO F J, CAO X L, ZHU Y W, et al. Injection parameters optimization of binary combination flooding system in offshore oil field, Shengli oil province[J]. Petroleum Geology and Recovery Efficiency, 2020,27(4):133-139. | |
[60] | WU X C, YANG Z J, XU H B, et al. Success and lessons learned from polymerflooding a ultra high temperature and ultra high salinity oil reservoir - A case study from West China[C]// paper SPE-179594-MS presented at the SPE Improved Oil Recovery Conference, 11-13 April, 2016, Tulsa, Oklahoma, USA. |
[1] | 吴财芳,高彬,李清,陈贞龙. 气体水合物合成研究进展 [J]. 油气藏评价与开发, 2024, 14(2): 267-276. |
[2] | 张连锋,张伊琳,郭欢欢,李洪生,李俊杰,梁丽梅,李文静,胡书奎. 近废弃油藏延长生命周期开发调整技术 [J]. 油气藏评价与开发, 2024, 14(1): 124-132. |
[3] | 许国晨, 刘晓文. 提高水井分注测试成功率配套技术研究与应用 [J]. 油气藏评价与开发, 2023, 13(6): 773-780. |
[4] | 胡德鹏. 水平井聚合物驱注采特征及井组效果影响因素分析 [J]. 油气藏评价与开发, 2022, 12(5): 809-815. |
[5] | 朱诗杰,叶仲斌,施雷庭,宋瑞,徐建根,刘哲知. 驱油用聚合物溶液的流变模型应用优化研究 [J]. 油气藏评价与开发, 2022, 12(4): 677-683. |
[6] | 李玺,周希,叶仲斌,舒政,陈文娟,陆一新,邱诚,何姝蕊. 水溶性环糊精聚合物提高疏水缔合聚合物性能研究 [J]. 油气藏评价与开发, 2021, 11(6): 884-889. |
[7] | 闫建丽,颜冠山,谷志猛,别梦君,张振杰. 渤海J油田高含水后期压裂井选井选层研究及应用 [J]. 油气藏评价与开发, 2021, 11(5): 736-743. |
[8] | 徐建平,袁远达,谢青,魏学刚,冯震. 分子动力学在聚合物驱油中的应用研究进展 [J]. 油气藏评价与开发, 2021, 11(3): 414-421. |
[9] | 卢军,张卓,杨力生,郭琳琳,张小静. 非均相驱油体系与低中渗油藏适应性评价研究 [J]. 油气藏评价与开发, 2020, 10(6): 17-23. |
[10] | 李华兵,李建霆,李文宏,胡俊,袁国伟,梁严,张新民,郭拥军. 低渗透油藏驱油用缔合聚合物的合成及其油藏适应性研究 [J]. 油气藏评价与开发, 2020, 10(6): 24-32. |
[11] | 于萌,铁磊磊,李翔,张博,刘文辉,常振. 驱油用聚合物在渤海油田中高渗储层的适应性实验研究 [J]. 油气藏评价与开发, 2020, 10(6): 40-45. |
[12] | 徐辉,祝仰文,宋敏,庞雪君,孙秀芝. 温敏型聚合物驱油性能研究 [J]. 油气藏评价与开发, 2020, 10(6): 53-57. |
[13] | 梁严,王增林,史树彬,郭拥军,胡俊,罗平亚,张新民,曹苗,张伟,刘洋. 稠油驱替-流度控制与非均质性调整——缔合聚合物与HPAM对比 [J]. 油气藏评价与开发, 2020, 10(6): 65-71. |
[14] | 张磊,贾兰,张道连. 强边水小断块油藏聚驱后期开发技术对策研究 [J]. 油气藏评价与开发, 2020, 10(6): 72-77. |
[15] | 张小静,卢军,张卓,梁丽梅,郭琳琳. 基于聚合物驱的多级非均相调驱研究 [J]. 油气藏评价与开发, 2020, 10(6): 90-95. |
|