[1] |
李睿姗, 何建华, 唐银明, 等. 稠油油藏氮气辅助蒸汽增产机理试验研究[J]. 石油天然气学报, 2006,28(1):72-75.
|
|
LI R S, HE J H, TANG Y M, et al. Experiment on the mechanism of nitrogen-assisted steam stimulation in heavy oil reservoirs[J]. Journal of Oil and Gas Technology, 2006,28(1):72-75.
|
[2] |
马春红, 段永旭. 洼38块蒸汽复合烟道气驱试验研究[J]. 特种油气藏, 2001,8(4):74-78.
|
|
MA C H, DUAN Y X. Experimental study on compound steam-flue gas drive in block Wa 38[J]. Special Oil & Gas Reservoirs, 2001,8(4):74-78.
|
[3] |
KUHLMAN M I. Expanded uses of nitrogen, oxygen and rich air for increased production of both light oil and heavy oil[C]// paper SPE-86954-MS presented at the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, 16-18 March, 2004, Bakersfield, California, USA.
|
[4] |
ZHAO S, PU W F, VARFOLOMEEV M A, et al. Comprehensive investigations into low temperature oxidation of heavy crude oil[J]. Journal of Petroleum Science and Engineering, 2018,171:835-842.
|
[5] |
张旭, 刘建仪, 孙良田, 等. 注空气低温氧化提高轻质油气藏采收率研究[J]. 天然气工业, 2004,24(4):78-80.
|
|
ZHANG X, LIU J Y, SUN L T, et al. Research on the mechanisms of enhancing recovery of light-oil reservoir by air-injected low-temperature oxidation technique[J]. Natural Gas Industry, 2004,24(4):78-80.
|
[6] |
ZHAO S, PU W F, SUN B S, et al. Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fractions[J]. Fuel, 2019,239:117-125.
|
[7] |
ZHAO S, PU W F, YUAN C D, et al. Thermal behavior and kinetic triplets of heavy crude oil and Its SARA fractions during combustion by high-pressure differential scanning calorimetry[J]. Energy Fuels, 2019,33(4):3176-3186.
|
[8] |
VARFOLOMEEV M A, GALUKHIN A, NURGALIEV D K, et al. Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions[J]. Fuel, 2016,186:122-127.
|
[9] |
SANTOS R G D, VARGAS J A V, TREVISAN O V. Thermal analysis and combustion kinetic of heavy oils and their asphaltene and maltene fractions using accelerating rate calorimetry[J]. Energy & Fuels, 2014,28(11):7140-7148.
|
[10] |
VARGAS J A V, SANTOS R G D, TREVISAN O V. Evaluation of crude oil oxidation by accelerating rate calorimetry[J]. Journal of Thermal Analysis & Calorimetry, 2013,113(2):897-908.
doi: 10.1007/s10973-012-2816-2
|
[11] |
蒲万芬, 袁成东, 金发扬, 等. 高温高压热跟踪补偿绝热静态氧化及动态氧化驱替装置:CN105044312A[P]. 2015-11-11.
|
|
PU W F, YUAN C D, JIN F Y, et al. High-temperature and high-pressure thermal tracking compensation heat insulation static oxidization and dynamic oxidization displacement device: CN105044312A[P]. 2015-11-11.
|
[12] |
WANG J X, WANG T F, FENG C M, et al. Catalytic effect of transition metallic additives on the light oil low-temperature oxidation reaction[J]. Energy & Fuels, 2015,29(6):3545-3555.
|
[13] |
寇建益. 温度变化对原油低温氧化过程影响研究[D]. 北京:中国科学院研究生院(理化技术研究所), 2008.
|
|
KOU J Y. Research on the effect of temperature on the LTO process of crude oil[D]. Beijing: University of Chinese Academy of Sciences(Technical Institute of Physics and Chemistry), 2008.
|
[14] |
PU W F, PANG S S, JIA H. Using DSC/TG/DTA techniques to reevaluate the effect of clays on crude oil oxidation kinetics[J]. Journal of Petroleum Science & Engineering, 2015,134:123-130.
|
[15] |
KÖK M V. Influence of reservoir rock composition on the combustion kinetics of crude oil[J]. Journal of Thermal Analysis & Calorimetry, 2009,97(2):397-401.
|
[16] |
YU X C, QU Z, KAN C B, et al. Effect of different clay minerals on heavy oil oxidation during ignition process[J]. Energy & Fuels, 2017,31(11):12839-12847.
|
[17] |
VARFOLOMEEV M A, NURGALIEV D K, KÖK M V. Thermal, kinetics, and oxidation mechanism studies of light crude oils in limestone and sandstone matrix using TG-DTG-DTA: Effect of heating rate and mesh size[J]. Liquid Fuels Technology, 2016,34(19):1647-1653.
|