油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (2): 181-189.doi: 10.13809/j.cnki.cn32-1825/te.2023.02.006
收稿日期:
2022-10-28
出版日期:
2023-04-26
发布日期:
2023-04-26
作者简介:
张莹(1984—),女,硕士,工程师,从事油气藏开发工作。地址:河北省唐山市曹妃甸区汇丰路47号南堡作业区,邮政编码:063200。E-mail:ZHANG Ying(),QU Lili,ZHU Lu,ZHANG Yan,HAN Siyang,ZENG Cheng
Received:
2022-10-28
Online:
2023-04-26
Published:
2023-04-26
摘要:
火山岩储层受岩相、岩性、储集空间类型等多因素影响,流体识别难度大,是测井解释的难题之一,亟需建立一种方便快捷识别方法。为此,针对渤海湾盆地南堡凹陷火山岩储层特征,采用机器学习的SVM(支持向量机)算法对未知储层进行流体预测。研究表明:①综合应用岩心、测井、录井等资料对流体敏感特征参数寻优,单信息敏感参数为声波时差、补偿密度、深侧向电阻率,多信息融合参数为自然伽马相对值、全烃比值、烃气密度指数、烃气湿度指数,以上7种参数参与模型建立;②使用SVM算法进行火山岩流体预测,将储层流体分为油层、油水同层和水层3类,选取测井、录井敏感参数,训练可靠样本库,预测库正判率达90 %。SVM算法预测应用表明,SVM算法计算复杂程度低,泛化推广能力强,可快速识别火山岩流体性质,为油气成藏规律分析和地质储量动用开发提供可靠依据。
中图分类号:
张莹,曲丽丽,朱露,张艳,韩思洋,曾诚. SVM算法在渤海湾盆地南堡凹陷火山岩储层流体预测中的应用[J]. 油气藏评价与开发, 2023, 13(2): 181-189.
ZHANG Ying,QU Lili,ZHU Lu,ZHANG Yan,HAN Siyang,ZENG Cheng. Application of SVM algorithm in fluid prediction of volcanic reservoirs in Nanpu Sag, Bohai Bay Basin[J]. Reservoir Evaluation and Development, 2023, 13(2): 181-189.
表1
南堡凹陷南堡1号构造化学成分(质量百分比)统计"
层位 | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | CO2 | H2O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
馆陶组 | 47.69 | 2.26 | 14.29 | 7.94 | 3.95 | 0.16 | 8.55 | 6.27 | 3.15 | 1.25 | 0.34 | 0.66 | 3.60 |
45.64 | 2.72 | 15.91 | 6.42 | 4.24 | 0.19 | 8.75 | 7.68 | 3.15 | 1.45 | 0.66 | 0.66 | 2.89 | |
46.71 | 1.92 | 15.98 | 4.54 | 5.87 | 0.14 | 4.91 | 10.21 | 2.74 | 0.72 | 0.35 | 3.36 | 2.50 | |
46.02 | 2.23 | 14.86 | 5.00 | 7.74 | 0.09 | 5.25 | 8.51 | 2.30 | 0.42 | 0.27 | 3.60 | 3.86 | |
48.67 | 1.82 | 14.97 | 4.01 | 6.93 | 0.10 | 4.71 | 9.10 | 2.29 | 0.51 | 0.32 | 3.26 | 3.12 | |
45.91 | 1.85 | 15.50 | 2.69 | 7.28 | 0.12 | 4.11 | 9.05 | 3.80 | 0.56 | 0.35 | 5.14 | 3.51 |
表4
SVM识别火山岩流体性质训练数据库"
训练数据 | ||||||||
---|---|---|---|---|---|---|---|---|
井号 | △GR | 全烃比值 | 烃气湿度指数 | 烃气密度指数 | 试油结论 | |||
NP11-A1 | 91.72 | 2.57 | 12.30 | 0.18 | 12.12 | 36.16 | 6.11 | 油层 |
NP11-A2 | 88.56 | 2.41 | 14.50 | 0.25 | 13.47 | 52.59 | 4.47 | 油层 |
NP11-A3 | 88.20 | 2.26 | 11.30 | 0.32 | 25.70 | 45.51 | 5.31 | 油层 |
NP11-A4 | 96.00 | 2.30 | 25.00 | 0.31 | 26.43 | 43.53 | 4.74 | 油层 |
NP11-A5 | 82.40 | 2.40 | 20.00 | 0.14 | 43.94 | 31.84 | 3.83 | 油层 |
NP11-A6 | 84.30 | 2.47 | 9.80 | 0.29 | 110.41 | 40.22 | 3.78 | 油层 |
NP11-A7 | 78.70 | 2.48 | 4.10 | 0.22 | 5.55 | 51.81 | 6.08 | 油水同层 |
NP11-A8 | 95.66 | 2.14 | 4.80 | 0.16 | 6.00 | 86.65 | 10.00 | 油水同层 |
NP11-A9 | 73.40 | 2.64 | 8.80 | 0.23 | 11.50 | 23.44 | 5.50 | 油水同层 |
NP11-A10 | 83.33 | 2.39 | 7.80 | 0.30 | 7.04 | 34.52 | 5.77 | 油水同层 |
NP11-A11 | 87.00 | 2.30 | 10.50 | 0.29 | 10.50 | 79.08 | 9.25 | 油水同层 |
NP11-A12 | 88.81 | 2.54 | 7.60 | 0.16 | 9.73 | 33.44 | 5.43 | 油水同层 |
NP11-A13 | 85.23 | 2.35 | 6.50 | 0.31 | 8.16 | 87.39 | 7.57 | 油水同层 |
NP11-A14 | 90.29 | 2.48 | 3.50 | 0.24 | 4.42 | 39.20 | 7.53 | 水层 |
NP11-A15 | 80.05 | 2.59 | 3.50 | 0.18 | 2.62 | 45.24 | 9.00 | 水层 |
NP11-A16 | 71.54 | 2.70 | 6.50 | 0.25 | 3.96 | 50.69 | 8.33 | 水层 |
NP11-A17 | 87.32 | 2.35 | 5.20 | 0.32 | 5.16 | 35.72 | 6.33 | 水层 |
NP11-A18 | 101.59 | 2.20 | 2.50 | 0.31 | 4.91 | 32.87 | 7.74 | 水层 |
NP11-A19 | 95.18 | 2.20 | 6.50 | 0.22 | 6.28 | 24.33 | 7.28 | 水层 |
NP11-A20 | 100.24 | 2.33 | 6.00 | 0.16 | 7.68 | 33.41 | 7.77 | 水层 |
表5
SVM识别火山岩流体性质预测数据库"
预测数据 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
井号 | △GR | 全烃比值 | 烃气湿度指数 | 烃气密度指数 | 试油结论 | 预测结果 | 对比 | |||
NP11-B1 | 100.00 | 2.26 | 9.80 | 0.11 | 15.57 | 27.61 | 5.45 | 油层 | 油层 | 正确 |
NP11-B2 | 97.00 | 2.22 | 15.00 | 0.26 | 19.60 | 49.71 | 5.92 | 油层 | 油层 | 正确 |
NP11-B3 | 83.20 | 2.47 | 10.90 | 0.19 | 13.92 | 40.70 | 5.06 | 油层 | 油层 | 正确 |
NP11-B4 | 93.06 | 2.38 | 13.20 | 0.21 | 36.33 | 30.13 | 4.10 | 油层 | 油层 | 正确 |
NP11-B5 | 83.12 | 2.48 | 21.30 | 0.28 | 104.96 | 23.56 | 4.89 | 油层 | 油层 | 正确 |
NP11-B6 | 74.50 | 2.42 | 6.50 | 0.35 | 5.25 | 32.30 | 6.34 | 油水同层 | 油水同层 | 正确 |
NP11-B7 | 80.45 | 2.42 | 5.10 | 0.34 | 5.64 | 131.54 | 7.54 | 油水同层 | 油水同层 | 正确 |
NP11-B8 | 85.74 | 2.50 | 8.10 | 0.09 | 6.22 | 161.15 | 11.22 | 油水同层 | 油层 | 错误 |
NP11-B9 | 86.73 | 2.39 | 10.50 | 0.24 | 7.02 | 73.04 | 6.56 | 油水同层 | 油水同层 | 正确 |
NP11-B10 | 82.12 | 2.45 | 6.50 | 0.17 | 7.42 | 65.82 | 8.50 | 油水同层 | 油水同层 | 正确 |
NP11-B11 | 77.37 | 2.50 | 5.80 | 0.23 | 8.94 | 17.44 | 4.92 | 油水同层 | 油水同层 | 正确 |
NP11-B12 | 91.64 | 2.35 | 9.60 | 0.30 | 5.09 | 119.40 | 10.00 | 油水同层 | 油水同层 | 正确 |
NP11-B13 | 81.58 | 2.26 | 3.50 | 0.37 | 2.66 | 38.53 | 7.14 | 水层 | 水层 | 正确 |
NP11-B14 | 91.06 | 2.59 | 4.50 | 0.36 | 3.56 | 25.60 | 8.58 | 水层 | 水层 | 正确 |
NP11-B15 | 71.23 | 2.65 | 3.60 | 0.11 | 3.29 | 52.00 | 9.00 | 水层 | 水层 | 正确 |
NP11-B16 | 75.23 | 2.55 | 5.30 | 0.26 | 4.56 | 34.87 | 6.84 | 水层 | 水层 | 正确 |
NP11-B17 | 98.76 | 2.39 | 5.50 | 0.19 | 5.21 | 43.03 | 11.20 | 水层 | 油水同层 | 错误 |
NP11-B18 | 91.53 | 2.11 | 3.50 | 0.25 | 5.29 | 30.05 | 8.38 | 水层 | 水层 | 正确 |
NP11-B19 | 101.01 | 2.44 | 4.10 | 0.35 | 6.54 | 30.78 | 9.00 | 水层 | 水层 | 正确 |
NP11-B20 | 96.13 | 2.34 | 3.66 | 0.29 | 4.35 | 29.50 | 6.32 | 水层 | 水层 | 正确 |
[1] | 邹才能, 候连华, 王京红, 等. 火山岩风化壳地层型油气藏评价预测方法研究——以新疆北部石炭系为例[J]. 地球物理学报, 2011, 54(2): 388-400. |
ZOU Caineng, HOU Lianhua, WANG Jinghong, et al. Evaluation and forecast methods of stratigraphic reservoir of volcanic weathering crust: An example from Carboniferous formation in northern Xinjiang[J]. Chinese Journal of Geophysics, 2011, 54(2): 388-400. | |
[2] | 庄圆, 杨凤丽. 春风油田石炭系火山岩油气层综合判识研究[J]. 新疆地质, 2019, 37(2): 231-236. |
ZHUANG Yuan, YANG Fengli. Study on hydrocarbon reservoir synthesize distinguish of carboniferous volcanic rock from Chunfeng Oil Field[J]. Xinjiang Geology, 2019, 37(2): 231-236. | |
[3] | 张艺, 李道清, 仇鹏, 等. 基于岩性分类的火山岩储层流体识别方法——以克拉美丽气田石炭系火山岩为例[J]. 西安石油大学学报(自然科学版), 2020, 35(6): 22-28. |
ZHANG Yi, LI Daoqing, QIU Peng, et al. Study on fluid identification method of volcanic reservoir based on lithology classification: A case study of carboniferous volcanic rocks in Kelamei Gasfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(6): 22-28. | |
[4] | 吴煜宇, 谢冰, 伍丽红, 等. 四川盆地二叠系基性火山岩测井评价技术——以永探1井区火山岩为例[J]. 天然气工业, 2019, 39(2): 37-45. |
WU Yuyu, XIE Bing, WU Lihong, et al. Logging based lithology identification of Permian mafic volcanic rocks in the Sichuan Basin: A case study from the well Yongtan 1[J]. Natural Gas Industry, 2019, 39(2): 37-45. | |
[5] | 李想, 金萍, 石艳. 火山岩储层含油性预测方法——以克拉玛依油田九区石炭系油藏为例[J]. 石油天然气学报, 2014, 36(6): 59-62. |
LI Xiang, JIN Ping, SHI Yan. Oiliness prediction method for volcanic rock reservoirs: Taking Carboniferous reservoirs in block 9 of Karamay Oilfield as an example[J]. Journal of Oil and Gas Technology, 2014, 36(6): 59-62. | |
[6] | 张丽华, 张国斌, 齐艳萍, 等. 准噶尔盆地西泉地区石炭系火山岩岩性测井识别[J]. 新疆石油地质, 2017, 38(4): 427-431. |
ZHANG Lihua, ZHANG Guobin, QI Yanping, et al. Lithology identification of Carboniferous volcanic rocks in Xiquan area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(4): 427-431. | |
[7] |
SHI F, WANG X L, LIU C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64-90.
doi: 10.1016/j.engfracmech.2017.01.025 |
[8] | NGUYEN T T, YVONNET J, ZHU Q Z, et al. A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 312(6): 567-595. |
[9] |
LIANG X, YVONNET J, GHABEZLOO S. Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media[J]. Engineering Fracture Mechanics, 2017, 186(6): 158-180.
doi: 10.1016/j.engfracmech.2017.10.005 |
[10] | 洪一鸣, 王璞珺, 李瑞磊, 等. 基于常规测井数据的火山岩岩性神经网络识别: 以松辽盆地南部长岭断陷为例[J]. 世界地质, 2021, 40(2): 409-417. |
HONG Yiming, WANG Pujun, LI Ruilei, et al. Neural network recognition of volcanic rock lithology based on conventional logging data: A case study of Changling fault depression, southern Songliao Basin[J]. Global Geology, 2021, 40(2): 409-417. | |
[11] | 陈跃, 王丽雅, 李国富, 等. 基于随机森林算法的低煤阶煤层气开发选区预测[J]. 油气藏评价与开发, 2022, 12(4): 596-603. |
CHEN Yue, WANG Liya, LI Guofu, et al. Prediction of favorable areas for low-rank coalbed methane based on random forest algorithm[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 596-603. | |
[12] | 董月霞, 周海民, 夏文臣. 南堡凹陷火山活动与裂陷旋回[J]. 石油与天然气地质, 2000, 21(4): 304-307. |
DONG Yuexia, ZHOU Haimin, XIA Wenchen. Volcanic activity and rift-subsidence cycles in Nanpu Sag[J]. Oil and Gas Geology, 2000, 21(4): 304-307. | |
[13] | 林伟强, 曲丽丽, 朱璐, 等. 井震藏结合判定井间砂体联通性研究及应用——以南堡油田M区中深层为例[J]. 油气藏评价与开发, 2022, 12(2): 373-381. |
LIN Weiqiang, QU Lili, ZHU Lu, et al. Evaluation of inter-well sand body connectivity by combination of well, seismic, and reservoir and its application: Taking the middle and deep layers of M area of Nanpu Oilfield as an example[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 373-381. | |
[14] | 董月霞, 夏文臣, 周海民. 南堡凹陷第三系火山岩演化序列研究[J]. 石油勘探与开发, 2003, 30(2): 24-26. |
DONG Yuexia, XIA Wenchen, ZHOU Haimin. Evolvement sequence of tertiary volcanic rocks in the Nanpu sag, Eastern China[J]. Petroleum Exploration and Development, 2003, 30(2): 24-26 | |
[15] | 庄东志, 谢伟彪. 南堡凹陷5号构造东部深层火山岩储层流体性质识别方法[J]. 石油天然气学报, 2014, 36(5): 73-76. |
ZHUANG Dongzhi, XIE Weibiao. A method for identifying fluid properties of deep volcanic reservoirs in the east of No. 5 structure in Nanpu Sag[J]. Journal of Oil and Gas Technology, 2014, 36(5): 73-76. | |
[16] | 李昌年. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社, 1992. |
LI Changnian. Trace element petrology of igneous rocks[M]. Wuhan: China University of Geosciences Press, 1992. | |
[17] | 梁新平, 金之钧, 刘全有, 等. 火山灰对富有机质页岩形成的影响——以西西伯利亚盆地中生界巴热诺夫组为例[J]. 石油与天然气地质, 2021, 42(1): 201-211. |
LIANG Xinping, JIN Zhijun, LIU Quanyou, et al. Impact of volcanic ash on the formation of organic-rich shale: A case study on the Mesozoic Bazhenov Formation, West Siberian Basin[J]. Oil & Gas Geology, 2021, 42(1): 201-211. | |
[18] | 程希, 任战利. 利用地球化学元素与矿物关系识别GS油田下干柴沟组地层岩性[J]. 地球物理学进展, 2008, 23(6): 1903-1908. |
CHENG Xi, REN Zhanli. Identification of Ganchaigou group rock lithology in the GS Oilfield by relationship between elements and minerals using geochemical logging technology[J]. Progress in Geophysics, 2008, 23(6): 1903-1908. | |
[19] | 张明学, 吴杰, 胡玉双. 松辽盆地丰乐地区营城组火山岩储层预测[J]. 地球物理学进展, 2009, 24(6): 2145-2150. |
ZHANG Mingxue, WU Jie, HU Yushuang. Prediction of reservoirs in volcanic rocks of the Yingcheng formation in the Fengle area north of the Songliao basin[J]. Progress in Geophysics, 2009, 24(6): 2145-2150. | |
[20] | 支东明, 贾春明, 姚卫江, 等. 准噶尔盆地车排子地区火山岩油气成藏主控因素[J]. 石油天然气学报, 2010, (2): 166-169. |
ZHI Dongming, JIA Chunming, YAO Weijiang, et al. The major control factors of volcanic reservoir forming law in Chepaizi area of Junggar Basin[J]. Journal of Petroleum and Natural Gas, 2010, (2): 166-169. | |
[21] | 刘双莲. 常规测井技术识别火山岩裂缝方法研究——以松南火山岩为例[J]. 非常规油气, 2022, 9(4): 16-22. |
LIU Shuanglian. Study on method of identifying volcanic rock fractures by conventional logging technology: A case study on Songnan volcanic rock[J]. Unconventional Oil & Gas, 2022, 9(4): 16-22. | |
[22] | 刘双莲. 页岩气“双甜点”参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4): 1005-1012. |
Liu Shuanglian. Logging evaluation of “double sweet spot” in shale gas reservoirs[J]. Oil & Gas Geology, 2022, 43(4): 1005-1012. | |
[23] | 张建民, 李超炜, 张继业, 等. 长深1井区火成岩岩性识别方法及应用[J]. 吉林大学学报(地球科学版), 2008, 38(S1): 106-109. |
ZHANG Jianmin, LI Chaowei, ZHANG Jiye, et al. A lithologic identification method of igneous rocks and its application in changling area[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(S1): 106-109. | |
[24] | 张莹, 潘保芝, 印长海, 等. 成像测井图像在火山岩岩性识别中的应用[J]. 石油物探, 2007; 46(3): 288-293. |
ZHANG Ying, PAN Baozhi, YIN Changhai, et al. Application of imaging logging maps in lithologic identification of volcanics[J]. Geophysical Prospecting for Petroleum, 2007, 46(3): 288-293. | |
[25] | 王满, 薛林福, 潘保芝. FMI图像纹理统计方法识别火成岩岩性[J]. 测井技术, 2009, 33(2): l10-114. |
WANG Man, XUE Linfu, PAN Baozhi. Lithology identification of igneous rock using FMI texture analysis[J]. Well Logging Technology, 2009, 33(2): l10-114. | |
[26] | 赵建, 高福红. 测井资料交会图法在火山岩岩性识别中的应用[J]. 世界地质, 2003, 22(2): 136-140. |
ZHAO Jian, GAO Fuhong. Application of crossplots based on well log data in identifying volcanic lithology[J]. Global Geology, 2003, 22(2): 136-140. | |
[27] | 张丽华, 潘保芝, 单刚义, 等. 长岭地区火山岩储层流体性质测井预测[J]. 地球物理学进展, 2009, 24(6): 2151-2155. |
ZHANG Lihua, PAN Baozhi, SHAN Gangyi, et al. Fluid property logging prediction of volcanic reservoirs in the Changling area[J]. Progress in Geophysics, 2009, 24(6): 2151-2155. |
[1] | 马代鑫,任宪军,赵密福,韩娇艳,刘玉虎. 火山岩气藏勘探开发理论技术与实践——以松南断陷白垩系火山岩为例 [J]. 油气藏评价与开发, 2024, 14(2): 167-175. |
[2] | 邱一新. 致密火山岩气藏产能方程修正方法研究与应用 [J]. 油气藏评价与开发, 2024, 14(2): 190-196. |
[3] | 李宁,苗贺,曹开芳. 基于叠前方位各向异性的火山岩裂缝预测——以松辽盆地南部LFS地区为例 [J]. 油气藏评价与开发, 2024, 14(2): 197-206. |
[4] | 李瑞磊,曹磊,樊薛沛,冯晓辉,李宁. 中基性火山岩多种叠前反演算法对比、优选及应用——以查干花地区火石岭组为例 [J]. 油气藏评价与开发, 2024, 14(2): 207-215. |
[5] | 沈艳杰,李钧如,张立亚,周洋,程日辉. 松辽盆地营城组火山岩相发育特征——以吉林省九台地区野外露头为例 [J]. 油气藏评价与开发, 2024, 14(2): 224-236. |
[6] | 王同,熊亮,董晓霞,向克满,周桦,钟文俊,罗海金,郭卫星,周静. 川南地区筇竹寺组新层系页岩储层特征 [J]. 油气藏评价与开发, 2021, 11(3): 443-451. |
[7] | 葛忠伟,欧阳嘉穗,王同,周静,郭卫星,靳利超. 永川深层页岩气田储层特征及富集规律研究 [J]. 油气藏评价与开发, 2021, 11(1): 29-37. |
[8] | 何顺,秦启荣,范存辉,周吉羚,钟城,黄为. 川东南丁山地区五峰—龙马溪组页岩储层特征及影响因素 [J]. 油气藏评价与开发, 2019, 9(4): 61-67. |
|