[1] |
薛宇泽, 张玉贵, 韩元红, 等. 关中盆地韩城大断裂东南地区浅部地温垂向分布特征浅析[J]. 油气藏评价与开发, 2022, 12(6): 843-849.
|
|
XUE Yuze, ZHANG Yugui, HAN Yuanhong, et al. Vertical distribution characteristics analysis of shallow stratum geothermal temperature field in the Southeastern Hancheng fault, Guanzhong Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 843-849.
|
[2] |
李健, 武江元, 杨震, 等. 地热发电技术及其关键影响因素综述[J]. 热力发电, 2022, 51(3): 1-8.
|
|
LI Jian, WU Jiangyuan, YANG Zhen, et al. Review of geothermal power generation technologies and key influencing factors[J]. Thermal Power Generation, 2022, 51(3): 1-8.
|
[3] |
庞菊梅, 庞忠和, 孔彦龙, 等. 示踪实验在岩溶热储井间连通性研究中的应用: 2014年中国地球科学联合学术年会——专题4: 地热: 从地表到深部论文集[C]. 北京: 北京伯通电子出版社, 2014: 453.
|
|
PANG Jumei, PANG Zhonghe, KONG Yanlong, et al. Interwell connectivity in a karstic geothermal reservoir through tracer tests[C]// 2014 Annual Meeting of Chinese Geoscience Union(CGU); Special Topic 4: Geothermal:From Surface to Deep. Beijing: Beijing Botong Digital Publishing House, 2014: 453.
|
[4] |
赵志宏, 刘桂宏, 谭现锋, 等. 基于等效渗流通道模型的地热尾水回灌理论模型[J]. 水文地质工程地质, 2017, 44(3): 158-164.
|
|
ZHAO Zhihong, LIU Guihong, TAN Xianfeng, et al. Theoretical model of geothermal tail water reinjection based on the equivalent flow channel model[J]. Hydrogeology&Engineering Geology, 2017, 44(3):158-164.
|
[5] |
殷肖肖, 沈健, 赵艳婷, 等. 集中采灌条件下碳酸盐岩热储群井示踪试验[J]. 地质学报, 2021, 95(6): 1984-1994.
doi: 10.1111/acgs.v95.6
|
|
YIN Xiaoxiao, SHEN Jian, ZHAO Yanting, et al. Study on tracer test of carbonate geothermal reservoir under centralized pumping and re-injection conditions[J]. Acta Geologica Sinica, 2021, 95(6): 1984-1994.
doi: 10.1111/acgs.v95.6
|
[6] |
AXELSSONL G, BJORNSSON G, MONTALVO F. Quantitative interpretation of tracer test data[C]// Proceedings World Geothermal Congress 2005, Antalya, Turkey, April 2005.
|
[7] |
庞菊梅, 庞忠和, 孔彦龙, 等. 岩溶热储井间连通性的示踪研究[J]. 地质科学, 2014, 49(3): 915-923.
|
|
PANG Jumei, PANG Zhonghe, KONG Yanlong, et al. Interwell connectivity in a karstic geothermal reservoir through tracer tests[J]. Chinese Journal of Geology, 2014, 49(3): 915-923.
|
[8] |
云智汉. 深层孔隙型热储地热尾水回灌堵塞机理及示踪技术研究——以咸阳回灌二号井为例[D]. 西安: 长安大学, 2014.
|
|
YUN Zhihan. Clogging mechanism and tracer technique research of deep-porous type geothermal water re-injection-take Xianyang re-injection well No. 2 for example[D]. Xi'an: Chang'an University, 2014.
|
[9] |
陈玉林. 西安地热田地热水回灌试验研究[D]. 西安: 西北大学, 2012.
|
|
CHEN Yulin. Geothermal re-injection test in Xi'an city[D]. Xi'an: Northweste University, 2012.
|
[10] |
吴丽莉, 孟凡奇, 董玉龙, 等. 山东省郓城县岩溶热储回灌试验[J]. 山东国土资源, 2017, 33(6): 38-42.
|
|
WU Lili, MENG Fanqi, DONG Yulong, et al. Experimental study on karst geothermal reservoir reinjection in Yuncheng county of Shandong province[J]. Shandong Land and Resources, 2017, 33(6): 38-42.
|
[11] |
庞菊梅, 王树芳, 孙彩霞, 等. 雄县地热田示踪试验的解释及分析[J]. 城市地质, 2011, 6(2): 12-17.
|
|
PANG Jumei, WANG Shufang, SUN Caixia, et al. Interpretation and analysis of trac test in Xiongxian geothermal field[J]. Urban Geology, 2011, 6(2): 12-17.
|
[12] |
刘桂宏. 城市深层热储热水力多场耦合模拟方法与应用[D]. 徐州: 中国矿业大学, 2020.
|
|
LIU Guihong. Numerical method for the coupled THM processes in deep geothermal reservoirs at city scale and application[D]. Xuzhou: China University of Mining&Technology, 2020.
|
[13] |
李元杰. 地热回灌示踪技术及热储模拟实验研究[D]. 北京: 中国地质科学院, 2010.
|
|
LI Yuanjie. Study on geothermal reinjection of tracer technology and simulation of thermal energy storage[D]. Beijing: Chinese Academy of Geological Science, 2010.
|
[14] |
薛超, 柴宏有, 葛毓, 等. 韩城地区中深层岩溶地热资源热储特征及潜力评价[J]. 陕西煤炭, 2021, 40(1): 18-21.
|
|
XUE Chao, CHAI Hongyou, GE Yu, et al. Thermal reservoir characteristics and potential evaluation of karst geothermal resources in Hancheng area[J]. Shaanxi Coal, 2021, 40(1): 18-21.
|
[15] |
付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 2021, 26(3): 19-40.
doi: 10.3969/j.issn.1672-7703.2021.03.003
|
|
FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.
doi: 10.3969/j.issn.1672-7703.2021.03.003
|
[16] |
杨华, 张军, 王飞雁, 等. 鄂尔多斯盆地古生界含气系统特征[J]. 天然气工业, 2000, 20(6): 7-11.
|
|
YANG Hua, ZHANG Jun, WANG Feiyan, et al. Characteristic of paleozoic gas system in E′ERDUOSI Basin[J]. Natural Gas Industry, 2000, 20(6): 7-11.
|
[17] |
刘志武, 白勇, 周立发. 渭河盆地结构及其油气成藏地质条件[J]. 石油实验地质, 2016, 38(5): 584-591.
|
|
LIU Zhiwu, BAI Yong, Zhou Lifa. Basin structure and hydrocarbon accumulation conditions of the Weihe Basin[J]. Petroleum Geology&Experiment, 2016, 38(5): 584-591.
|
[18] |
李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西安: 西北大学, 2016.
|
|
LI Zhichao. The lithofacies paleogeography and paleoenvironmental evolution of the cenozoic in the Weihe Basin, China[D]. Xi'an: Northweste University, 2016.
|
[19] |
李建宁, 马汉田, 王英, 等. 晋陕河津——韩城地区岩溶地下水勘查报告[R]. 太原: 山西省地质调查院, 2004.
|
|
LI Jianning, MA Hantian, WANG Ying, et al. Karst groundwater investigation report in the Hejin-Hancheng Region of Shanxi Province and Shaanxi Province[R]. Taiyuan: Geological Survey Institute of Shanxi Province, 2004.
|
[20] |
阎凤忠, 贺勇, 安卫平, 等. 韩城——侯马断陷区主要活动断裂的调查[J]. 山西地震, 1987, 15(3): 9-13.
|
|
YAN Fengzhong, HE Yong, AN Weiping, et al. Investigation of main active faults in the Hancheng-Houma fault depression zone[J]. Earthquake Research in Shanxi, 1987, 15(3): 9-13.
|
[21] |
代革联. 地质构造对韩城矿区水文地质特征的影响[J]. 干旱区资源与环境, 2010, 24(7): 62-67.
|
|
DAI Gelian. The effect of geology structure on hydrogeology characteristics of Hancheng Mining Area[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 62-67.
|
[22] |
周武. 鄂尔多斯地块东南缘与汾渭地堑接壤地带寻找深部岩溶地热水新突破[J]. 地下水, 2020, 42(4): 106-107.
|
|
ZHOU Wu. A new breakthrough was made in the search for deep karst geothermal water in the Southeastern edge of the Ordos block and the border zone of Fenwei Graben[J]. Ground Water, 2020, 42(4): 106-107.
|
[23] |
能源行业地热专业标准化技术委员会. 热储示踪试验技术规程: NB/T 10703—2021[S]. 北京: 中国石化出版社, 2022.
|
|
Energy industry geothermal energy standardization technical committee. Technical specification for thermal storage tracer test: NB/T 10703—2021[S]. Beijing: China Petrochemical Press, 2022.
|
[24] |
The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems[R]. USA: United States Office of Research and EPA, 2002.
|
[25] |
杨平恒, 袁道先, 蓝家程, 等. 基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J]. 西南大学学报(自然科学版), 2013, 35(2): 103-108.
|
|
YANG Pingheng, YUAN Daoxian, LAN Jiacheng, et al. Tracing test of karst aquifer based online, high-resolution monitoring and quantitative calculation[J]. Journal of Southwest University(Natural Science Edition), 2013, 35(2): 103-108.
|
[26] |
姜光辉, 郭芳, 林玉石, 等. 岩溶管道流示踪试验的定量解析[J]. 水文地质工程地质, 2008, 35(增刊1): 384-387.
|
|
JIANG Guanghui, GUO Fang, LIN Yushi, et al. Analysis of quantitative tracing test in karst conduit[J]. Hydrogeology&Engineering Geology, 2008, 35(suppl. 1): 384-387.
|
[27] |
徐尚全, 王鹏, 焦杰松, 等. 高精度在线示踪技术在岩溶地下水文调查中的应用[J]. 工程勘察, 2013, 41(2): 40-44.
|
|
XU Shangquan, WANG Peng, JIAO Jiesong, et al. Application of high-precision online tracer technique in the hydrogeological investigation of karst groundwater[J]. Geotechnical Investigation&surveying, 2013, 41(2): 40-44.
|
[28] |
张志强, 张强, 班兆玉, 等. 基于示踪试验的岩溶管道及水力参数定量解析[J]. 人民长江, 2015, 46(11): 80-83.
|
|
ZHANG Zhiqiang, ZHANG Qiang, BAN Zhaoyu, et al. Quantitative analysis of karst conduit and its hydraulic parameters based on tracer test[J]. Yangtze River, 2015, 46(11): 80-83.
|
[29] |
GOLDSCHEIDER N, PRONK M, MEIMAN J, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of Speleology, 2008, 37(1): 27-40.
doi: 10.5038/1827-806X
|
[30] |
李腾芳, 覃小群, 黄奇波, 等. 岩溶区地下水示踪试验及曲线特征[J]. 中国矿业, 2019, 28(增刊2): 497-498.
|
|
LI Tengfang, QIN Xiaoqun, HUANG Qibo, et al. Groundwater tracer test and curve characteristics in karst area[J]. China Mining Magazine, 2019, 28(suppl. 2): 497-498.
|