1 |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
|
|
KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.
|
2 |
李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 1-11.
|
|
LI Yang, LIAN Peiqing, XUE Zhaojie, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 1-11.
|
3 |
李剑峰. 智慧石化建设: 从信息化到智能化[J]. 石油科技论坛, 2020, 39(1): 34-42.
|
|
LI Jianfeng. Construction of intelligent petrochemical industry: From information to intelligence[J]. Petroleum Science and Technology Forum, 2020, 39(1): 34-42.
|
4 |
张凯, 赵兴刚, 张黎明, 等. 智能油田开发中的大数据及智能优化理论和方法研究现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 28-38.
|
|
ZHANG Kai, ZHAO Xinggang, ZHANG Liming, et al. Current status and prospect for the research and application of big data and intelligent optimization methods in oilfield development[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 28-38.
|
5 |
刘伟, 闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛, 2018, 37(4): 32-40.
|
|
LIU Wei, YAN Na. Application and influence of artificial intelligence in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32-40.
|
6 |
于金彪. 油藏数值模拟历史拟合分析方法[J]. 油气地质与采收率, 2017, 24(3): 66-70.
|
|
YU Jinbiao. History matching analysis method on reservoir numerical simulation[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(3): 66-70.
|
7 |
王鸣川, 段太忠, 孙红军, 等. 油藏自动历史拟合研究进展[J]. 科技导报, 2016, 34(18): 236-245.
|
|
WANG Mingchuan, DUAN Taizhong, SUN Hongjun, et al. Research progress in reservoir automatic history matching[J]. Science & Technology Review, 2016, 34(18): 236-245.
|
8 |
钟仪华, 王淑宁, 罗兰, 等. 用深度学习挖掘油田开发指标预测模型的知识[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 63-74.
|
|
ZHONG Yihua, WANG Shuning, LUO Lan, et al. Knowledge mining for oilfield development index prediction model using deep learning[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 63-74.
|
9 |
谷建伟, 周梅, 李志涛, 等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏, 2019, 26(2): 77-81.
|
|
GU Jianwei, ZHOU Mei, LI Zhitao, et al. Oil well production forecast with long-short term memory network model based on data mining[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 77-81.
|
10 |
侯春华. 基于长短期记忆神经网络的油田新井产油量预测方法[J]. 油气地质与采收率, 2019, 26(3): 105-110.
|
|
HOU Chunhua. New well oil production forecast method based on long-term and short-term memory neural network[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(3): 105-110.
|
11 |
阳晓燕. 非均质油藏水驱开发效果研究[J]. 特种油气藏, 2019, 26(2): 152-156.
|
|
YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152-156.
|
12 |
黄帅, 彭彩珍. 基于灰色关联的产量递减因素分析[J]. 油气藏评价与开发, 2018, 8(4): 33-35.
|
|
HUANG Shuai, PENG Caizhen. Study on production decline factors based on gray correlation[J]. Reservoir Evaluation and Development, 2018, 8(4): 33-35.
|
13 |
张茂林, 廖洪, 杨龙, 等. 页岩气藏储量计算方法分析[J]. 油气藏评价与开发, 2017, 7(3): 67-73.
|
|
ZHANG Maolin, LIAO Hong, YANG Long, et al. Reserve calculating method of shale gas reservoir[J]. Reservoir Evaluation and Development, 2017, 7(3): 67-73.
|
14 |
杨耀忠, 谭绍泉, 孙业恒, 等. 油气勘探开发综合研究数字平台建设及应用[J]. 油气藏评价与开发, 2021, 11(4): 628-634.
|
|
YANG Yaozhong, TAN Shaoquan, SUN Yeheng, et al. Construction and application of digital platform for comprehensive research of oil and gas exploration and development[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 628-634.
|
15 |
梁文福. 油田开发智能应用系统建设成果及展望[J]. 大庆石油地质与开发, 2019, 38(5): 283-289.
|
|
LIANG Wenfu. Constructed achievements and prospects of the intelligent application system for the oilfield development[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 283-289.
|
16 |
任燕龙, 谷建伟, 崔文富, 等. 基于改进果蝇算法和长短期记忆神经网络的油田产量预测模型[J]. 科学技术与工程, 2020, 20(18): 7245-7251.
|
|
REN Yanlong, GU Jianwei, CUI Wenfu, et al. Oilfield production prediction model based on improved fruit fly algorithm and long-short term memory neural network[J]. Science Technology and Engineering, 2020, 20(18): 7245-7251.
|
17 |
刘巍, 刘威, 谷建伟. 基于机器学习方法的油井日产油量预测[J]. 石油钻采工艺, 2020, 42(1): 70-75.
|
|
LIU Wei, LIU Wei, GU Jianwei. Oil production prediction based on a machine learning method[J]. Oil Drilling & Production Technology, 2020, 42(1): 70-75.
|
18 |
吴君达, 李治平, 孙妍, 等. 基于神经网络的剩余油分布预测及注采参数优化[J]. 油气地质与采收率, 2020, 27(4): 85-93.
|
|
WU Junda, LI Zhiping, SUN Yan, et al. Neural network-based prediction of remaining oil distribution and optimization of injection-production parameters[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 85-93.
|
19 |
刘巍, 刘威, 谷建伟, 等. 利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J]. 油气地质与采收率, 2020, 27(2): 118-124.
|
|
LIU Wei, LIU Wei, GU Jianwei, et al. Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 118-124.
|
20 |
石玉江, 刘国强, 钟吉彬, 等. 基于大数据的测井智能解释系统开发与应用[J]. 中国石油勘探, 2021, 26(2): 113-126.
|
|
SHI Yujiang, LIU Guoqiang, ZHONG Jibin, et al. Development and application of intelligent logging interpretation system based on big data[J]. China Petroleum Exploration, 2021, 26(2): 113-126.
|
21 |
段友祥, 李根田, 孙歧峰. 卷积神经网络在储层预测中的应用研究[J]. 通信学报, 2016, 37(): 1-9.
|
|
DUAN Youxiang, LI Gentian, SUN Qifeng. Research on convolutional neural network for reservoir parameter prediction[J]. Journal on Communications, 2016, 37(): 1-9.
|
22 |
林年添, 张栋, 张凯, 等. 地震油气储层的小样本卷积神经网络学习与预测[J]. 地球物理学报, 2018, 61(10): 4110-4125.
|
|
LIN Niantian, ZHANG Dong, ZHANG Kai, et al. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J]. Chinese Journal of Geophysics, 2018, 61(10): 4110-4125.
|
23 |
但松林, 刘尚奇, 罗艳艳, 等. 基于BP神经网络预测高含水层对SAGD开发效果的影响[J]. 大庆石油地质与开发, 2019, 38(2): 73-80.
|
|
DAN Songlin, LIU Shangqi, LUO Yanyan, et al. Predicted SAGD development effects by BP neural network for the high-watercut reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(2): 73-80.
|
24 |
宋辉, 陈伟, 李谋杰, 等. 基于卷积门控循环单元网络的储层参数预测方法[J]. 油气地质与采收率, 2019, 26(5): 73-78.
|
|
SONG Hui, CHEN Wei, LI Moujie, et al. A method to predict reservoir parameters based on convolutional neural network-gated recurrent unit(CNN-GRU)[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 73-78.
|
25 |
程翊珊, 李治平, 许龙飞, 等. 预测油层无机积垢的BP神经网络方法[J]. 大庆石油地质与开发, 2021, 40(3): 84-93.
|
|
CHENG Yishan, LI Zhiping, XU Longfei, et al. BP neural network method for predicting the inorganic scaling in the reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 84-93.
|
26 |
黄家宸, 张金川. 机器学习预测油气产量现状[J]. 油气藏评价与开发, 2021, 11(4): 613-620.
|
|
HUANG Jiachen, ZHANG Jinchuan. Overview of oil and gas production forecasting by machine learning[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 613-620.
|
27 |
王相, 杨耀忠, 何岩峰, 等. 基于深度学习的油井工况智能诊断技术研究及应用[J]. 油气地质与采收率, 2022, 29(1): 181-189.
|
|
WANG Xiang, YANG Yaozhong, HE Yanfeng, et al. Research and application of intelligent diagnosis technology of oil well working conditions based on deep learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 181-189.
|
28 |
郭健. 基于特征值提取与神经网络的抽油井故障诊断[J]. 电子设计工程, 2014, 22(2): 41-43.
|
|
GUO Jian. Fault diagnosis of pumping well based on the eigenvalue extraction and neural network[J]. Electronic Design Engineering, 2014, 22(2): 41-43.
|
29 |
曲文尧, 王春华. 人工神经网络法用于抽油机井故障诊断[J]. 油气田地面工程, 2013, 32(8): 14-15.
|
|
QU Wenyao, WANG Chunhua. Application of artificial neural network method to fault diagnosis of pumping wells[J]. Oil-Gasfield Surface Engineering, 2013, 32(8): 14-15.
|
30 |
仲志丹, 赵斐, 李鹏辉. 深度信念网在油井功图识别中的应用[J]. 西安石油大学学报(自然科学版), 2017, 32(3): 89-93.
|
|
ZHONG Zhidan, ZHAO Fei, LI Penghui. Application of deep belief network in identification of indicator diagram types[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017, 32(3): 89-93.
|
31 |
刘宝军. 基于CNN卷积神经网络的示功图诊断技术[J]. 西安石油大学学报(自然科学版), 2018, 33(5): 70-75.
|
|
LIU Baojun. Research on diagnostic technique of indicator diagram based on CNN convolution neural network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2018, 33(5): 70-75.
|
32 |
杜娟, 刘志刚, 宋考平, 等. 基于卷积神经网络的抽油机故障诊断[J]. 电子科技大学学报, 2020, 49(5): 751-757.
|
|
DU Juan, LIU Zhigang, SONG Kaoping, et al. Fault diagnosis of pumping unit based on convolutional neural network[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(5): 751-757.
|