油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (4): 704-710.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.021

• 综合研究 • 上一篇    

缝洞型油藏流动实验仿真模拟方法研究

惠健1,2()   

  1. 1.中国石化缝洞型油藏提高采收率重点实验室,新疆 乌鲁木齐 830011
    2.中国石化西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830011
  • 收稿日期:2024-06-05 发布日期:2025-07-19 出版日期:2025-08-26
  • 作者简介:惠健(1978—),男,博士,高级工程师,主要从事缝洞型油气藏开发及提高采收率技术研究。地址:新疆维吾尔自治区乌鲁木齐市新市区长春南路466号,邮政编码:830011。E-mail: huij.xbsj@sinopec.com
  • 基金资助:
    国家科技重大专项“塔里木盆地碳酸盐岩油气田提高采收率关键技术示范工程”(2016ZX05053);中国石油化工股份有限公司重点实验室项目“缝洞型多尺度大型物理模型构建研究”(KL21022)

Study on simulation methods for flow experiments in fracture-cavity reservoirs

HUI Jian1,2()   

  1. 1.Sinopec Key Laboratory of Fracture-Cavity Reservoir Enhanced Oil Recovery, Urumqi, Xinjiang 830011, China
    2.Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi, Xinjiang 830011, China
  • Received:2024-06-05 Online:2025-07-19 Published:2025-08-26

摘要:

缝洞型碳酸盐岩储层储集空间以孔洞、裂缝,基质孔隙为主。其中,孔洞与裂缝分布随机性极强,为油气的主要储集空间与渗流通道。强非均质性使得缝洞型碳酸盐岩储层流体流动特征极为复杂,表现为孔洞内自由流动和裂缝内渗流并存。通常需进行室内物理模拟实验以揭示储层内流体分布规律及特殊流动现象,现有缝洞物理实验模型难以同时达到耐高压和可视化的要求,从而限制了流体在地层条件下流动机理的研究。为了精准表征缝洞型储层中的流体流动特征,同时降低实验研究成本,基于流体动力学和计算机仿真模拟技术,探索了开展缝洞型储层流体流动实验仿真模拟的可行性。通过对缝洞物理实验模型中自由流动区域和渗流区域的流动特征进行模拟分析,发现地层温度与压力条件下流体在物理实验模型中的流动以低雷诺数Stokes(斯托克斯)流动为主,以此为基础对传统自由流方程进行简化,采用统一的动量方程表征模型中的自由流动和渗流,在欧拉方程中引入黏性阻力系数等参数,以表征渗流区域内的多相流动特征,实现了缝洞模型中不同流态耦合的一体化模拟。选用3D缝洞数字模型进行了流动仿真,对比模拟结果,验证了统一流动模型的可靠性。模拟结果表明:对于典型缝洞物理模型流动实验,基于Stokes方程的层流模型可以达到传统Darcy-NS耦合模型的模拟精度,具有较好的可靠性,且能有效提升仿真模拟的运算效率,为缝洞型储层的流动机理研究提供了一种新的研究方法。

关键词: 缝洞型油藏, 3D打印, 仿真模拟, Navier-Stokes方程, Darcy方程

Abstract:

The storage space of fracture-cavity carbonate reservoirs is primarily composed of fractures, cavities, and matrix pores. Among them, fractures and cavities exhibit highly random distribution, serving as the main storage spaces and seepage pathways for oil and gas. The strong heterogeneity of these reservoirs leads to highly complex fluid flow behavior, characterized by the coexistence of free flow occurring in cavities and seepage flow in fractures. Indoor physical simulation experiments are usually required to reveal the fluid distribution patterns and unique flow phenomena within the reservoir. However, current physical models for fracture-cavity systems struggle to meet both high-pressure resistance and visualization requirements, thus limiting the investigation of fluid flow mechanisms under reservoir conditions. To accurately characterize fluid flow in fracture-cavity reservoirs while reducing experimental research costs, the feasibility of fluid flow experiment simulations in fracture-cavity reservoirs was explored based on fluid dynamics and computer simulation technology. By simulating and analyzing the flow characteristics in the free flow and seepage regions of the fractured-vuggy physical model, it was found that under reservoir temperature and pressure conditions, fluid flow in the physical model primarily followed low Reynolds number Stokes flow. Based on this, the traditional free flow equation was simplified, and a unified momentum equation was established to describe both free flow and seepage in the model. Parameters such as the viscous resistance coefficient were introduced into the Euler equations to characterize multiphase flow characteristics in the seepage region, achieving an integrated simulation of different flow regimes in the fracture-cavity model. A 3D fracture-cavity digital model was selected for flow simulation, and the comparison of simulation results verified the reliability of the unified flow model. The simulation results indicated that for typical fracture-cavity physical model flow experiments, the laminar flow model based on Stokes equation could achieve the simulation accuracy of the traditional Darcy-Navier-Stokes (Darcy-NS) coupled model, with strong reliability, while significantly improving computational efficiency. This provides a new research method for the study of flow mechanisms in fracture-cavity reservoirs.

Key words: fracture-cavity reservoir, 3D printing, simulation, Navier-Stokes equation, Darcy equation

中图分类号: 

  • TE319