油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (5): 788-795.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.008

• 油气勘探 • 上一篇    下一篇

基于深度学习的智能速度谱拾取技术及应用

许冲()   

  1. 中国石化江苏油田分公司物探研究院,江苏 南京 210046
  • 收稿日期:2024-09-14 发布日期:2025-09-19 出版日期:2025-10-26
  • 作者简介:许冲(1984—),女,硕士,高级工程师,从事地震资料处理、解释研究等相关工作。地址:江苏省南京市尧新大道68号,邮政编码:210046。E-mail:xuchong.jsyt@sinopec.com
  • 基金资助:
    中国石化科技攻关项目“智能化速度建模与综合解释技术深化研究及推广应用”(P24137)

Deep learning-based intelligent velocity spectrum picking technology and its application

XU Chong()   

  1. Geophysical Research Institute, Sinopec Jiangsu Oilfield Company, Nanjing, Jiangsu 210046, China
  • Received:2024-09-14 Online:2025-09-19 Published:2025-10-26

摘要:

速度谱拾取是地震数据处理的重要环节,传统的速度谱拾取方法通常需要人工干预,耗时、耗力且容易出错。因此,提出了基于单次目标检测v8(You Only Look Once v8,简称YOLOv8)神经网络的智能速度谱拾取技术,通过将速度谱数据转换为图像识别问题,实现了速度谱拾取的自动化和智能化。此项技术的核心方法是将速度谱数据转换图像,然后输入到构建的YOLOv8神经网络模型中,通过模型中的特征提取网络学习速度谱图像中的能量团空间信息,再通过特征融合网络将提取的浅、中、深层不同尺度的能量团特征进行融合,更全面地捕捉该图像的能量团特征,进而通过检测头部分精细预测能量团目标,获得速度谱图像对应不同拾取位置的像素点,将像素点进行对应换算,最终得到“时间-速度”对数据。针对中国石化江苏油田GY探区火成岩发育、多次波干扰强等特点,构建了包含1 200张速度谱图像的数据集,通过优化训练参数,模型准确度和召回率均达到90%左右。YOLOv8神经网络的智能速度谱拾取技术在高覆盖区域与人工拾取的速度曲线吻合度超过94%;在覆盖区域3 500 ms以上吻合度超过90%;在火成岩和断裂发育区域吻合度约92%。与传统卷积神经网络(CNN)方法相比,YOLOv8神经网络的智能速度谱拾取技术拾取点更多、位置更准确,且单张速度谱处理时间仅需10 ms,效率提升显著。此项技术为地震资料处理提供了高效、准确的智能解决方案,具有重要的推广应用价值。

关键词: 速度谱, 智能拾取, YOLOv8神经网络, 深度学习, 地震数据处理

Abstract:

Velocity spectrum picking is a crucial step in seismic data processing. Traditional velocity spectrum picking methods usually require manual intervention, which is time-consuming, labor-intensive, and prone to error. Therefore, an intelligent velocity spectrum picking method based on the YOLOv8 (You Only Look Once v8) neural network was proposed. This method transforms velocity spectrum data analysis into an image recognition task, therefore achieving automated and intelligent velocity spectrum picking. The core of this method is to convert velocity spectrum data into images, which are then input into the constructed YOLOv8 neural network model. The feature extraction network in the model learns the spatial information of energy clusters in the velocity spectrum images, and the feature fusion network fuses the extracted multi-scale features of energy clusters from shallow, intermediate, and deep layers to capture the energy cluster features in the images more comprehensively. The detection head of the model allows for refined predictions of energy cluster targets, obtaining pixel points corresponding to different picking positions in the velocity spectrum images. Then, the pixel points are converted to finally obtain the time-velocity pairs. For the exploration area GY of the Sinopec Jiangsu oilfield with developed igneous rocks and strong multiple interference, a dataset containing 1 200 velocity spectrum images was constructed. By optimizing training parameters, both the model accuracy and recall reached about 90%. The intelligent velocity spectrum picking technology based on the YOLOv8 neural network showed over 94% consistency with manually picked velocity curves in high-coverage areas, more than 90% consistency in areas above 3 500 ms, and about 92% consistency in areas with igneous rocks and fault development. Compared with traditional convolutional neural network (CNN) methods, the intelligent velocity spectrum picking technology based on the YOLOv8 neural network obtains more picking points with higher positional accuracy, and the processing time of a single velocity spectrum is only 10 ms, showing significant efficiency improvement. This technology provides an efficient and accurate intelligent solution for seismic data processing, demonstrating promising application and promotion value.

Key words: velocity spectrum, intelligent picking, YOLOv8 neural network, deep learning, seismic data processing

中图分类号: 

  • TE132