油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (2): 135-145.doi: 10.13809/j.cnki.cn32-1825/te.2021.02.001
• 专家论坛 • 下一篇
收稿日期:
2021-01-12
出版日期:
2021-04-26
发布日期:
2021-04-30
作者简介:
何治亮(1963—),男,博士,教授级高级工程师,本刊第二届编委会顾问,主要从事石油与天然气地质学研究。地址:北京市朝阳区朝阳门北大街22号,邮政编码:100728。E-mail: 基金资助:
HE Zhiliang1,2,3(),NIE Haikuan1,2,4,JIANG Tingxue1,5
Received:
2021-01-12
Online:
2021-04-26
Published:
2021-04-30
摘要:
深层页岩气(埋深大于3 500 m)是四川盆地页岩气勘探开发重要的战略接替领域。尽管前期已在四川盆地五峰组—龙马溪组3 500~4 000 m钻获工业页岩气流,但由于递减速度快和EUR(估算最终可采储量)低,尚未实现规模性商业开发。基于对深层页岩气勘探开发现状分析,梳理了四川盆地深层页岩气规模高效开发面临的挑战,主要包括深层页岩气赋存机理和富集规律认识有待深化、经济有效压裂改造的工程工艺技术尚待建立以及深层页岩气开发组织运行和管理方式难以满足规模有效开发的需求。提出了实现深层页岩气规模有效开发三方面的应对策略:①深化深层页岩气富集规律认识,建立选区与目标评价方法,形成“甜点”和“甜窗”预测描述技术;②深化深层页岩气工程地质条件研究,并形成先进配套的钻井、压裂工程工艺技术与装备体系,充分解放地层产能;③推行地质—工程一体化,构建全新的体制机制,大幅度降低成本,实现深层页岩气开发效益最大化。四川盆地五峰组—龙马溪组在大于3 500 m的深层领域多口井获得工业气流并已提交探明储量,是优先开展深层页岩气开发实践的重点层段,通过深化地质认识、攻克关键技术难题和优化组织管理,大幅度提速降本增效,在较短的时间内可望实现规模有效开发,预期产量有望超过中—浅层。
中图分类号:
何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发, 2021, 11(2): 135-145.
HE Zhiliang,NIE Haikuan,JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135-145.
表1
国内外深层页岩气藏压裂工艺参数对比(据文献[26,27,28]汇总)"
压裂工艺参数 | 国外 | 国内 |
---|---|---|
分段分簇 | 单段3~10簇 | 单段2~6簇 |
射孔参数 | 孔径14 mm以上 | 孔径9.5 mm、10.5 mm、12.7 mm |
压裂模式 | 预处理酸+线性胶+滑溜水+冻胶 | 预处理酸+胶液+滑溜水+胶液 |
压裂液 | 滑溜水(1~3 mPa·s)和冻胶 | 滑溜水(9~12 mPa·s)和聚合物 |
支撑剂 | 100目、40/70目、30/50目、20/40目 | 100目、40/70目、30/50目 |
加砂方式 | 低砂比连续加砂 | 段塞加砂 |
单段压裂规模(m3) | 1 500~2 900 | 1 600~3 100 |
单段支撑剂规模(m3) | 70~110 | 50~80 |
综合砂液比(%) | 3~6 | 1.1~4.1 |
施工排量(m3/min) | 11~14 | 12~18 |
施工压力(MPa) | 70~90 | 90~118 |
表2
国内外主要深层页岩气藏参数对比(据文献[2,29-32]汇总)"
区块 | 深度 (m) | 优质页岩 厚度(m) | Ro (%) | 孔隙度 (%) | TOC (%) | 硅质含量(%) | 碳酸质 含量(%) | 含气性 (m3/t) | 地层压力系数 | 水平 地应力差 |
---|---|---|---|---|---|---|---|---|---|---|
焦石坝 | 3 880~4 011 | 30.5~49.5 | 2.42~2.80 | 3.12~3.33 | 2.84~2.93 | 47.7~69.2 | 10.1~12.3 | 3.33~4.52 | 1.38~1.57 | 7.4~14.0 |
丁山 | 3 936~4 269 | 39.0~35.0 | 1.85~2.23 | 3.77~4.60 | 2.85~3.72 | 41.1~52.3 | 11.0~15.2 | 5.06~6.15 | 1.25~1.70 | 13.0~24.0 |
南川 | 4 382~4 411 | 29.0 | 2.53 | 4.12 | 3.17 | 46.2 | 9.7 | 4.10 | 1.52 | 22.0 |
东溪 | 4 197~4 227 | 30.5 | 4.60 | 3.49 | 52.3 | 11.0 | 5.06 | 1.40~1.65 | 17.0 | |
Eagle Ford | 1 200~4 200 | 20.0~90.0 | 0.60~1.80 | 4.50 (3.00~7.00) | 4.50 (3.00~7.00) | 14.0~35.0 | 20.0~50.0 | 6.00 | 1.35~1.80 | 4.0 |
Haynesville | 3 658 | 45.0 | 1.20~3.00 | 10.00 (8.00~12.00) | 4.00 (3.00~5.00) | 15.0~20.0 | 40.0~90.0 | 12.00 | 1.90 | <10.0 |
Cana Woodford | 4 115 | 50.0 | 6.50 (5.00~8.00) | 9.00 (6.00~12.00) | 48.0~74.0 | <20.0 | 1.58 | 5.7 |
表3
国内外压裂装备技术现状对比(据文献[33,34,35]汇总)"
工艺技术 | 国外 | 国内 |
---|---|---|
压裂装备 | ①压裂装备主要为2 300 hp以下拖装柴驱 ②多采用拖装双泵结构,整机功率5 000~7 000 hp | ①国内压裂装备以柴驱为主,已经开发了3000—7000型电动压裂设备 ②压裂装备平均负荷率在60 %以下 |
压裂地面管汇 | 以大通径法兰管线为主的拖链式或围栏式管汇结构 | 由壬式3″三通道、4″两通道结构,管线安装复杂,存在振动、超排现象 |
连续油管作业装备 | ①连续油管作业装备,2″油管长度达到8 000 m ②装备自动化、信息化水平较高,油管现场连接技术成熟 | ①现役连续油管主力装备油管容量最大为2″,长度为6 000 m, ②现场连接焊接技术可靠性和自动化水平有待提高 |
[1] | 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选[M]. 北京: 科学出版社, 2016. |
Department of land and resources oil and gas strategic research center. National survey and evaluation of shale gas potential and selection of favorable areas[M]. Beijing: Science Press, 2016. | |
[2] | 何治亮, 聂海宽, 蒋廷学, 等. 深层页岩气有效开发中的地质问题——以四川盆地及周缘五峰组—龙马溪组为例[J]. 石油学报, 2020,41(4):379-391. |
HE Zhiliang, NIE Haikuan, JIANG Tingxue, et al. Geological problems in the effective development of deep shale gas:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020,41(4):379-391. | |
[3] | 曹海涛, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例[J]. 天然气工业, 2019,39(S1):118-122. |
CAO Haitao, ZHAN Guowei, YU Xiaoqun, et al. Main factors affecting productivity of deep shale gas wells: A case study of Yongchuan block in southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):118-122. | |
[4] | 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019,39(11):55-63. |
YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(11):55-63. | |
[5] | 蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017,37(1):90-96. |
JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017,37(1):90-96. | |
[6] | 蒋廷学, 周健, 张旭, 等. 深层页岩气井裂缝扩展及导流特性研究及展望[J]. 中国科学:物理学力学天文学, 2017,47(11):33-40. |
JIANG Tingxue, ZHOU Jian, ZHANG Xu, et al. Overview and prospect of fracture propagation and conductivity characteristics in deep shale gas wells[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2017,47(11):33-40. | |
[7] | 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169. |
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(1):161-169. | |
[8] | 郭旭升. 四川盆地涪陵平桥页岩气田五峰组——龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019,30(1):1-10. |
GUO Xusheng. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2019,30(1):1-10. | |
[9] | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017,28(12):1781-1796. |
ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017,28(12):1781-1796. | |
[10] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
MA Yongsheng, CAI Xunyu, ZHAO Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45(4):561-574. | |
[11] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004,24(7):15-18. |
ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,24(7):15-18. | |
[12] | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10. |
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016,23(1):1-10. | |
[13] | 张水昌, 胡国艺, 米敬奎, 等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报, 2013,34(S1):41-50. |
ZHANG Shuichang, HU Guoyi, MI Jingkui, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013,34(S1):41-50. | |
[14] | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017,28(5):724-733. |
HE Zhiliang, HU Zongquan, NIE Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017,28(5):724-733. | |
[15] | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020,49(1):13-35. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020,49(1):13-35. | |
[16] |
琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014,29(4):492-506.
doi: 10.11867/j.issn.1001-8166.2014.04.0492 |
JU Yiwen, BU Hongling, WANG Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014,29(4):492-506.
doi: 10.11867/j.issn.1001-8166.2014.04.0492 |
|
[17] |
聂海宽, 张金川. 页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011,33(3):219-225.
doi: 10.11781/sysydz201103219 |
NIE Haikuan, ZHANG Jinchuan. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011,33(3):219-225.
doi: 10.11781/sysydz201103219 |
|
[18] |
XIAO X M, WEI Q, GAI H F, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China[J]. Petroleum Science, 2015,12(4):573-586.
doi: 10.1007/s12182-015-0057-2 |
[19] | NIE H K, JIN Z J, SUN C X, et al. Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores[J]. Energy & Fuels, 2019,33(9):8076-8100. |
[20] |
HE Z L, NIE H K, ZHAO J H, et al. Types and origin of nanoscale pores and fractures in Wufeng and Longmaxi Shale in Sichuan Basin and its periphery[J]. Journal of Nanoscience and Nanotechnology, 2017,17(9):6626-6633.
doi: 10.1166/jnn.2017.14425 |
[21] | 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014,88(7):1209-1218. |
GUO Xusheng. Rules of two-factor enrichment for marine shale gas in Southern China——Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014,88(7):1209-1218. | |
[22] |
王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015,36(1):1-6.
doi: 10.11743/ogg20150101 |
|
[23] | 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016,23(2):8-17. |
HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016,23(2):8-17. | |
[24] | 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016,37(5):557-571. |
NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The“source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016,37(5):557-571. | |
[25] |
HE Z L, LI S J, NIE H K, et al. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range[J]. Marine and Petroleum Geology, 2019,101:334-342.
doi: 10.1016/j.marpetgeo.2018.11.033 |
[26] | GRIESER B TALLEY C. Post-frac production analysis of horizontal completions in CANA Woodford Shale[C]// paper presented at the SPE Hydraulic Fracturing Technology Conference, February 6-8, 2012, The Woodlands, Texas, USA. |
[27] | FARINAS M, FONSECA E. Hydraulic fracturing simulation case study and post frac analysis in the Haynesville Shale[C]// paper SPE-163847-MS presented at the SPE Hydraulic Fracturing Technology Conference, February 4-6, 2013, The Woodlands, Texas, USA. |
[28] | LOWE T, POTTS M D, WOOD D E. A case history of comprehensive hydraulic fracturing monitoring in the Cana Woodford[C]// paper SPE-166295-MS presented at the SPE Annual Technical Conference and Exhibition, September 30-October 2, 2013, New Orleans, Louisiana, USA. |
[29] |
GENTZIS T. A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA[J]. International Journal of Coal Geology, 2013,113:64-75.
doi: 10.1016/j.coal.2012.09.006 |
[30] |
GENTZIS T. Review of the hydrocarbon potential of the Steele Shale and Niobrara Formation in Wyoming, USA: A major unconventional resource play?[J]. International Journal of Coal Geology, 2016,166:118-127.
doi: 10.1016/j.coal.2016.07.002 |
[31] | 陈作, 曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术, 2016,44(1):6-11. |
CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016,44(1):6-11. | |
[32] | American Association of Petroleum Geologists, Energy Minerals Division. Unconventional Energy Resources: 2017 Review[J]. Natural Resources Research, 2018, https://doi.org/10.1007/s11053-018-9432-1. |
[33] | 彭俊威, 周青, 戴启平, 等. 国内大型压裂装备发展现状及分析[J]. 石油机械, 2016,44(5):82-86. |
PENG Junwei, ZHOU Qing, DAI Qiping, et al. Development status and analysis of domestic large-scale fracturing equipment[J]. China Petroleum Machinery, 2016,44(5):82-86. | |
[34] | 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械, 2016,44(11):72-79. |
WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016,44(11):72-79. | |
[35] | 张增年, 李华川, 郑家伟, 等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺, 2020,43(2):41-44. |
ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technology development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020,43(2):41-44. | |
[36] | 王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组—龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017,44(4):531-539. |
WANG Yuman, WANG Hongkun, ZHANG Chenchen, et al. Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017,44(4):531-539. | |
[37] | 段华, 李荷婷, 代俊清, 等. 深层页岩气水平井“增净压、促缝网、保充填”压裂改造模式——以四川盆地东南部丁山地区为例[J]. 天然气工业, 2019,39(2):66-70. |
DUAN Hua, LI Heting, DAI Junqing, et al. Horizontal well fracturing mode of “increasing net pressure, promoting network fracture and keeping conductivity” for the stimulation of deep shale gas reservoirs: A case study of the Dingshan area in SE Sichuan Basin[J]. Natural Gas Industry, 2019,39(2):66-70. | |
[38] | STEGENT N A, WAGNER A L, MONTES M, et al. SMA technology extends the useful range of nonceramic proppants in the Eagle Ford Shale[C]// paper SPE-136801-MS presented at the Tight Gas Completions Conference, November 2-3, 2010, San Antonio, Texas, USA. |
[39] | ENRIQUEZ-TENORIO O, KNORR A, ZHU D, et al. Relationships between mechanical properties and fracturing conductivity for the Eagle Ford Shale[J]. SPE Production & Operations, 2019,34(2):318-331. |
[40] | 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015,20(4):1-23. |
WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient South China Marine Shale Gas Development[J]. China Petroleum Exploration, 2015,20(4):1-23. | |
[41] | 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论坛, 2018,37(5):24-34. |
XIAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 2018,37(5):24-34. | |
[42] | 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017,22(1):1-5. |
HU Wenrui. Geology-engineering integration—a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017,22(1):1-5. | |
[43] | 刘忠宝, 高波, 张钰莹, 等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发, 2017,44(1):21-31. |
LIU Zhongbao, GAO Bo, ZHANG Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017,44(1):21-31. |
[1] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[2] | 李东晖,田玲钰,聂海宽,彭泽阳. 基于模糊层次分析法的页岩气井产能影响因素分析及综合评价模型——以四川盆地焦石坝页岩气田为例 [J]. 油气藏评价与开发, 2022, 12(3): 417-428. |
[3] | 朱化蜀,王希勇,徐晓玲,郭治良,黄河淳. 威荣深层页岩长水平段工程钻探能力延伸极限研究 [J]. 油气藏评价与开发, 2022, 12(3): 506-514. |
[4] | 杜洋,倪杰,雷炜,周兴付,李莉,卜淘. 威荣深层页岩气井油管最优参数设计研究 [J]. 油气藏评价与开发, 2022, 12(3): 526-533. |
[5] | 何文渊,冯子辉,张金友,白云风,付秀丽,赵莹,程心阳,高波,刘畅. 松辽盆地北部古龙凹陷古页8HC井地质剖面特征 [J]. 油气藏评价与开发, 2022, 12(1): 1-9. |
[6] | 朱彤,张哲,冯动军,郑荣才,王烽,彭勇民. 梁平福禄镇剖面大安寨段泥页岩地质特征 [J]. 油气藏评价与开发, 2022, 12(1): 139-149. |
[7] | 刘若冰,魏祥峰,刘珠江,燕继红,袁桃,魏富彬. JY1井五峰组—龙马溪组钻井地质剖面分析 [J]. 油气藏评价与开发, 2022, 12(1): 47-57. |
[8] | 王红岩,董大忠,施振生,邱振,卢斌,邵男,孙莎莎,张素荣. 川南海相页岩岩石相类型及“甜点”分布——以长宁双河剖面五峰组—龙马溪组为例 [J]. 油气藏评价与开发, 2022, 12(1): 68-81. |
[9] | 汤明光,刘清华,薛国庆,张芨强,鲁瑞彬. 海上低渗油藏注水水质关键参数界限研究——以涠洲11-4N油田流沙港组为例 [J]. 油气藏评价与开发, 2021, 11(5): 709-715. |
[10] | 李昌,沈安江,常少英,梁正中,李振林,孟贺. 机器学习法在碳酸盐岩岩相测井识别中应用及对比——以四川盆地MX地区龙王庙组地层为例 [J]. 油气藏评价与开发, 2021, 11(4): 586-596. |
[11] | 熊亮,庞河清,赵勇,魏力民,周桦,曹茜. 威荣深层页岩气储层微观孔隙结构表征及分类评价 [J]. 油气藏评价与开发, 2021, 11(2): 154-163. |
[12] | 周桦,魏力民,王同,王岩,庞河清,张天操. 威荣深层页岩气储层精细评价方法及应用 [J]. 油气藏评价与开发, 2021, 11(2): 176-183. |
[13] | 杨建,詹国卫,赵勇,任春昱,屈重玖. 川南深层页岩气超临界吸附解吸附特征研究 [J]. 油气藏评价与开发, 2021, 11(2): 184-189. |
[14] | 房大志,钱劲,梅俊伟,任建华,马波,卢比. 南川区块平桥背斜页岩气开发层系划分及合理井距优化研究 [J]. 油气藏评价与开发, 2021, 11(2): 212-218. |
[15] | 郭彤楼. 深层页岩气勘探开发进展与攻关方向 [J]. 油气藏评价与开发, 2021, 11(1): 1-6. |
|