[1] |
干磊, 何东博, 郭建林, 等. 机器学习方法在储层分类中的应用[J]. 数学的实践与认识, 2019, 49(13): 138-144.
|
|
GAN Lei, HE Dongbo, GUO Jianlin, et al. Application of machine learning method in reservoir classification[J]. Mathematics in Practice and Theory, 2019, 49(13): 138-144.
|
[2] |
徐晓祥, 李凡长, 张莉, 等. 范畴表示机器学习算法[J]. 计算机研究与发展, 2017, 54(11): 2567-2575.
|
|
XU Xiaoxiang, LI Fanchang, ZHANG Li, et al. The category representation of machine learning algorithm[J]. Journal of Computer Research and Development, 2017, 54(11): 2567-2575.
|
[3] |
程超, 李培彦, 陈雁, 等. 基于机器学习的储层测井评价研究进展[J]. 地球物理学进展, 2022, 37(1): 164-177.
|
|
CHENG Chao, LI Peiyan, CHEN Yan, et al. Research progress of reservoir logging evaluation based on machine learning[J]. Progress in Geophysics, 2022, 37(1): 164-177.
|
[4] |
仝卫国, 李敏霞, 张一可. 深度学习优化算法研究[J]. 计算机科学, 2018, 45(Z2): 155-159.
|
|
TONG Weiguo, LI Minxia, ZHANG Yike. Research on optimization algorithm of deep learning[J]. Computer Science, 2018, 45(Z2): 155-159.
|
[5] |
何玉春. 基于机器学习的储层渗透率预测方法[J]. 石化技术, 2022, 29(12): 182-184.
|
|
HE Yuchun. Machine learning to predict reservoir permeability[J]. Petrochemical Industry Technology, 2022, 29(12): 182-184.
|
[6] |
郑宇哲, 叶朝辉, 刘西恩, 等. 基于深度学习的储层物性参数预测方法研究[J]. 电子世界, 2018, 20(4): 23-26.
|
|
ZHENG Yuzhe, YE Zhaohui, LIU Xi'en, et al. Research on prediction method of reservoir physical properties based on deep learning[J]. Electronics World, 2020, 20(4): 23-26.
|
[7] |
丁燕, 杜启振, YASIN Qamar, 等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探, 2020, 59(2): 267-275.
doi: 10.3969/j.issn.1000-1441.2020.02.013
|
|
DING Yan, DU Qizhen, YASIN Qamar, et al. Fracture prediction based on deep learning: Application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 267-275.
doi: 10.3969/j.issn.1000-1441.2020.02.013
|
[8] |
史长林, 魏莉, 张剑, 等. 基于机器学习的储层预测方法[J]. 油气地质与采收率, 2022, 29(1): 90-97.
|
|
SHI Changlin, WEI Li, ZHANG Jian, et al. Reservoir prediction method based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 90-97.
|
[9] |
黄家宸, 张金川. 机器学习预测油气产量现状[J]. 油气藏评价与开发, 2021, 11(4): 613-620.
|
|
HUANG Jiachen, ZHANG Jinchuan. Overview of oil and gas production forecasting by machine learning[J]. Reservoir Evaluation and Pevelopment, 2021, 11(4): 613-620.
|
[10] |
侯晓琳. 深度学习在地质储层属性预测中的应用研究[J]. 计算机应用与软件, 2020, 37(4): 40-47.
|
|
HOU Xiaolin. Application of deep learning in geological reservoir properties prediction[J]. Computer Applications and Software, 2020, 37(4): 40-47.
|
[11] |
庾佳匕, 王鹏, 桂志先, 等. 自组织人工神经网络算法在储层预测中的应用[J]. 当代化工, 2019, 48(7): 1514-1518.
|
|
YU Jiabi, WANG Peng, GUI Zhixian, et al. Application of self-organizing artificial neural network in reservoir prediction[J]. Contemporary Chemical Industry, 2019, 48(7): 1514-1518.
|
[12] |
曹俊兴. 深度学习及其在深层天然气储层预测中的应用实验[J]. 物探化探计算技术, 2017, 39(6): 775-782.
|
|
CAO Junxing. Deep learning and its application in deep gas reservoir prediction[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(6): 775-782.
|
[13] |
罗刚, 肖立志, 史燕青, 等. 基于机器学习的致密储层流体识别方法研究[J]. 石油科学通报, 2022, 7(1): 24-33.
|
|
LUO Gang, XIAO Lizhi, SHI Yanqing, et al. Machine learning for reservoir fluid identification with logs[J]. Petroleum Science Bulletin, 2022, 7(1): 24-33.
|
[14] |
钱玉贵, 叶泰然, 张世华, 等. 叠前地质统计学反演技术在复杂储层量化预测中的应用[J]. 石油与天然气地质, 2013, 34(6): 834-840.
|
|
QIAN Yugui, YE Tairan, ZHANG Shihua, et al. Application of pre-stack geo-statistics inversion technology in quantitative prediction of complex reservoirs[J]. Oil & Gas Geology, 2013, (6): 834-840.
|
[15] |
杨威, 谢武仁, 俞凌杰, 等. 四川盆地上三叠统须家河组致密砂岩溶蚀实验及地质意义[J]. 石油实验地质, 2021, 43(4): 655-663.
|
|
YANG Wei, XIE Wuren, YU Lingjie, et al. Dissolution experiments and geological implications of tight sandstones in the Xujiahe Formation of Upper Triassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 655-663.
|
[16] |
陆红梅, 张仲培, 王琳霖, 等. 鄂尔多斯盆地南部上古生界致密碎屑岩储层预测——以镇泾地区为例[J]. 石油实验地质, 2021, 43(3): 443-451.
|
|
LU Hongmei, ZHANG Zhongpei, WANG Linlin, et al. Prediction of tight clastic reservoirs of Upper Paleozoic in southern Ordos Basin: A case study of Zhenjing district[J]. Petroleum Geology & Experiment, 2021, 43(3): 443-451.
|
[17] |
廉桂辉, 朱亚婷, 王晓光, 等. 叠前反演技术在玛湖油田储层预测中的应用[J]. 特种油气藏, 2022, 29(1): 80-84.
doi: 10.3969/j.issn.1006-6535.2022.01.012
|
|
LIAN Guihui, ZHU Yating, WANG Xiaoguang, et al. Application of pre-stack inversion technology to reservoir prediction of Mahu Oilfield[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 80-84.
doi: 10.3969/j.issn.1006-6535.2022.01.012
|
[18] |
符志国, 陈康, 廖娟, 等. 贝叶斯机器学习在储层预测中的应用研究[J]. 物探化探计算技术, 2020, 42(3): 345-351.
|
|
FU Zhiguo, CHEN Kang, LIAO Juan, et al. The research of application of Bayesian machine learning in reservoir prediction[J]. Computing Techniques For Geophysical And Geochemical Exploration, 2020, 42(3): 345-351.
|
[19] |
刘书会, 徐仁, 张昊. 基于贝叶斯估计的叠前反演技术在平湖油气田的应用[J]. 油气地质与采收率, 2010, 17(4): 30-32.
|
|
LIU Shuhui, XU Ren, ZHANG Hao. The application of pre-stack inversion technique based on Bayesian estimation in Pinghu oilfield[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(4): 30-32.
|
[20] |
袁成, 苏明军, 倪长宽. 基于稀疏贝叶斯学习的薄储层预测方法及应用[J]. 岩性油气藏, 2021, 33(1): 229-338.
|
|
YUAN Cheng, SU Mingjun, NI Changkuan. A new method for thin reservoir identification based on sparse Bayesian learning and its application[J]. Lithologic Reservoirs, 2021, 33(1): 229-338.
|
[21] |
马琦琦, 孙赞东, 杨柳鑫. 改进的贝叶斯迭代反演方法及其在白云岩致密储层识别的应用[J]. 物探与化探, 2019, 43(2): 234-243.
|
|
MA Qiqi, SUN Zandong, YANG Liuxin. Modified Bayesian iterative inversion method and its application to dolomite tight oil reservoirs prediction[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 234-243.
|
[22] |
朱剑兵, 王兴谋, 冯德永, 等. 基于双向循环神经网络的河流相储层预测方法及应用[J]. 石油物探, 2020, 59(2): 250-257.
doi: 10.3969/j.issn.1000-1441.2020.02.011
|
|
ZHU Jianbing, WANG Xingmou, FENG Deyong, et al. Predicting fluvial reservoirs using seismic data based on a Bi-recurrent neural network[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 250-257.
doi: 10.3969/j.issn.1000-1441.2020.02.011
|
[23] |
林年添, 付超, 张栋, 等. 无监督与监督学习下的含油气储层预测[J]. 石油物探, 2018, 57(4): 601-610.
doi: 10.3969/j.issn.1000-1441.2018.04.015
|
|
LIN Niantian, FU Chao, ZHANG Dong, et al. Supervised learning and unsupervised learning for hydrocarbon prediction using multiwave seismic data[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 601-610.
doi: 10.3969/j.issn.1000-1441.2018.04.015
|