油气藏评价与开发

• • 上一篇    

地质封存过程中CO2注入对地层影响研究进展

王展鹏1,2, 刘双星1, 刘琦2, 杨术刚1, 张敏2, 鲜成钢2, 翁艺斌1   

  1. 1.中国石油安全环保技术研究院有限公司,北京 102206;
    2.中国石油大学(北京)非常规油气科学技术研究院油气资源与工程国家重点实验室,北京 102249
  • 收稿日期:2024-06-25
  • 通讯作者: 刘琦(1984—),男,副教授,博士生导师,校青年拔尖人才,主要从事低碳能源工程与油气田化学工程研究。地址:北京市昌平区府学路18号中国石油大学(北京),邮政编码:102249。E-mail:liuqi@cup.edu.cn
  • 作者简介:王展鹏(2001—),男,在读研究生,主要从事CO2地质封存研究。地址:北京市昌平区府学路18号中国石油大学(北京),邮政编码:102249。E-mail:2022216610@student.cup.edu.cn
  • 基金资助:
    中国石油科技专项“咸水层二氧化碳封存协同烟气处置方法研究”(2023ZZ1301); 内蒙古自治区科技重大专项“化工产业CO2减排及其高值化利用的新材料、新机制、新途径”(2021ZD0020); 中国石油大学(北京)校基金“CCUS地质封存中固井水泥智能响应封窜体系协同调控机制研究”(ZX20200133); 国家自然科学基金“CCUS地质封存中CO2-咸水-地层岩-油井水泥相互作用机理的研究”(51604288)

Research progress on the effects of CO2 injection in geological storage on strata

WANG Zhanpeng1,2, LIU Shuangxing1, LIU Qi2, YANG Shugang1, ZHANG Min2, XIAN Chenggang2, WENG Yibin1   

  1. 1. The Research Institute of Safety & Environment Technology, China National Petroleum Corporation, Beijing 102206, China;
    2. National Key Laboratory of Petroleum Resources and Engineering, Unconventional Petroleum Research Institute,China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2024-06-25

摘要: CO2地质封存作为碳捕集、利用与封存(CCUS)技术中的重要一环,决定了CCUS技术的发展潜力和发展方向,是实现双碳目标的有效手段,明确CO2注入产生的一系列地层响应对于安全高效注入具有重要意义。压力提升是限制封存容量和封存安全的主要因素,流体溶解运移沉淀是影响地层稳定性和封存效率的本质特征,储层可注性及盖层安全性是决定地质封存项目成败的关键。系统讨论了CO2注入引起的压力聚集、压力传导、CO2-水-岩相互作用、矿物溶解沉淀及岩石孔隙结构特征等方面的地层响应特征,总结了润湿性、孔隙度、渗透率、流体性质、岩石强度、盖层完整性、地表形变及断层活化对储层可注性和盖层安全性的影响,指出目前研究存在的压力变化规律难预测、反应机理不明晰、注入效率不高效、监测评估尚不完善等主要问题。未来需要深化对封存机理的理解,改善地层响应的监测和评估方法,加强环境风险评估,进一步推动CO2地质封存技术的安全、高效应用,为应对全球气候变化问题提供有力支持。

关键词: 注入工艺, 压力变化, CO2-水-岩作用, 孔渗特征, 可注性

Abstract: As an important part of Carbon Capture, Utilization and Storage (CCUS) technology, CO2 geological storage determines the development potential and direction of CCUS technology, and is an effective means to achieve the dual carbon goal. It is of great significance to identify formation responses generated by CO2 injection for safe and efficient injection. Among these responses, the escalation in pressure is the main factor constraining the storage capacity and safety, fluid dynamics involving dissolution, migration, and potential precipitation are integral to maintaining formation stability and storage efficiency. In addition, reservoir's injectivity, ensuring seamless CO2 displacement, and the caprock integrity, which forms the basis for evaluating the project's viability. The formation response characteristics caused by CO2 injection, such as pressure accumulation, pressure conduction, CO2-water-rock interaction, mineral dissolution and precipitation, and rock pore structure characteristics, are systematically discussed. The influences of wettability, porosity, permeability, fluid properties, rock strength, cap integrity, surface deformation and fault activation on reservoir permeability and cap safety are summarized. It is acknowledged that prevailing research faces notable challenges, namely the unpredictability of pressure dynamics, an incomplete understanding of chemical reaction kinetics, inefficiencies in injection processes, and deficiencies in the sophistication of monitoring and evaluation frameworks. In the future, it is necessary to further deepen the understanding of the storage mechanism, improving the monitoring and assessment methods of formation response, advancing environmental risk assessment methodologies and refining preventive and control technologies to address potential ecological impacts.

Key words: injection process, pressure change, CO2-Water-Rock Interaction, porosity and permeability characteristics, injectivity

中图分类号: 

  • TE38