油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (4): 656-663.doi: 10.13809/j.cnki.cn32-1825/te.2025.04.015

• 方法理论 • 上一篇    下一篇

气田采出水回注地层CO2封存赋存状态研究

杨术刚1,2(), 任金蔓3, 蔡明玉1,2, 刘浩童1, 刘双星1,2, 薛明1,2, 张坤峰1,2()   

  1. 1.中国石油集团安全环保技术研究院有限公司,北京 102206
    2.石油石化污染物控制与处理国家重点实验室,北京 102206
    3.大庆油田水务环保公司水务环保研究院,黑龙江 大庆 163453
  • 收稿日期:2024-04-25 发布日期:2025-07-19 出版日期:2025-08-26
  • 通讯作者: 张坤峰(1971—),男,博士,高级工程师,从事CO2地质封存与利用相关研究工作。地址:北京市昌平区黄河北街1号院1号楼,邮政编码:102206。E-mail: zhangkunfeng@cnpc.com.cn
  • 作者简介:杨术刚(1993—),男,博士,工程师,从事CO2地质封存与利用相关研究工作。地址:北京市昌平区黄河北街1号院1号楼,邮政编码:102206。E-mail: yshugang@cnpc.com.cn
  • 基金资助:
    中国石油科技项目课题“咸水层二氧化碳封存协同烟气处置方法研究”(2023ZZ1301);中国石油集团安全环保技术研究院有限公司科学研究与技术开发项目“基于多模态数据的咸水层CO2有效封存量评价技术研究”(RISE2023KY14);中国石油科学研究与技术开发项目专题“高效贫水吸收剂开发与采出水回注协同CO2封存技术研究”(2021DQ03-A2)

Investigation on occurrence states of CO2 storage in formations with gas field produced water reinjection

YANG Shugang1,2(), REN Jinman3, CAI Mingyu1,2, LIU Haotong1, LIU Shuangxing1,2, XUE Ming1,2, ZHANG Kunfeng1,2()   

  1. 1.CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China
    2.State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
    3.Water and Environmental Protection Research Institute of Daqing Oilfield Water Environmental Protection Company, Daqing, Heilongjiang 163453, China
  • Received:2024-04-25 Online:2025-07-19 Published:2025-08-26

摘要:

减污降碳协同增效背景下,气田采出水回注协同CO2地质封存为推进减污降碳协同、拓展CO2地质封存效益路径提供了一种重要途径。CO2在气田采出水回注地层的赋存状态演化将直接影响CO2的封存效率和长期安全性。从CO2-气田采出水-储层岩石相互作用机理出发,运用PHREEQC软件,系统研究了CO2压力、采出水矿化度、储层岩石类型和地层温度对溶解矿化相CO2、自由相CO2 2种赋存状态的影响规律和作用机制,结合反应过程矿物组成与溶解矿化比例变化,分析了影响气田采出水回注地层CO2赋存状态主控因素。结果表明:①长石、绿泥石是促进CO2矿化反应的主要矿物,而伊利石与方解石则是主要的固碳矿物;② 溶解矿化相CO2物质的量(以下简称CO2溶解矿化量)随CO2压力的增加而增大,随气田采出水矿化度的增加而减小,砂岩体系中CO2溶解矿化量随温度的增加而减小,而在灰岩体系中CO2溶解矿化量随温度增加先减小后增加;③模拟条件下,CO2压力变化导致的砂岩与灰岩体系中CO2溶解矿化比例变化介于47%~72%,岩石类型差异导致的CO2溶解矿化比例变化介于10%~45%,采出水矿化度与地层温度变化导致的砂岩与灰岩体系中CO2溶解矿化比例变化分别介于2%~31%和3%~15%。研究成果对深化碳封存CO2赋存状态演化及影响因素认识、推进气田采出水回注协同CO2地质封存由理论研究向现场示范具有重要意义。

关键词: CO2地质封存, 气田采出水回注, 减污降碳协同, PHREEQC软件, CO2-水-岩相互作用, 赋存状态

Abstract:

Under the background of synergistic pollution and carbon reduction, gas field produced water reinjection coupled with CO2 geological storage provides an important pathway to promote synergistic efficiency and expand the benefits of CO2 geological storage. The evolution of CO2 occurrence states in formations with gas field produced water reinjection directly affects the CO2 storage efficiency and long-term security. Based on the interaction mechanism of CO2, gas field produced water, and reservoir rocks, the PHREEQC software was employed to systematically investigate the influence patterns and underlying mechanisms of CO2 pressure, produced water salinity, reservoir rock type, and formation temperature on the two CO2 occurrence states: dissolved-mineralized phase and free phase. Combined with changes in mineral composition and dissolution-mineralization ratios during reactions, the dominant factors affecting CO2 occurrence states in formations with gas field produced water reinjection were analyzed. The results showed that: (1) Feldspar and chlorite served as the primary minerals promoting CO2 mineralization reactions, while illite and calcite functioned as the main carbon fixation minerals. (2) The amount of CO2 in the dissolved-mineralized phase (hereinafter referred to as CO2 dissolution-mineralization quantity) increased with higher CO2 pressure but decreased with increasing salinity of gas field produced water. In sandstone systems, the CO2 dissolution-mineralization quantity decreased with increasing temperature, while in limestone systems, it first decreased and then increased with increasing temperature. (3) Under simulation conditions, changes in CO2 pressure led to variations in CO2 dissolution-mineralization proportions ranging from 47% to 72% in sandstone and limestone systems. Differences in rock type led to variations in CO2 dissolution-mineralization proportions ranging from 10% to 45%. Changes in produced water salinity and formation temperature led to variations in CO2 dissolution-mineralization proportions ranging from 2%-31% and 3%-15%, respectively, in sandstone and limestone systems. These findings are significant for deepening the understanding of CO2 occurrence state evolution and influencing factors, and for advancing the practical demonstration of gas field produced water reinjection coupled with CO2 geological storage from theoretical research to field applications.

Key words: CO2 geological storage, gas field produced water reinjection, synergistic reduction of pollution and carbon emission, PHREEQC software, CO2-water-rock interaction, occurrence states

中图分类号: 

  • TE99