油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (6): 959-971.doi: 10.13809/j.cnki.cn32-1825/te.2025.06.002
韦波1(
), 杨曙光2, 李鑫1,3(
), 唐助云2, 张娜4, 王博4, 赵琛4, 李锦如1, 赵正威2, 冯烁1, 贾超1
收稿日期:2024-09-18
发布日期:2025-10-24
出版日期:2025-12-26
通讯作者:
李鑫(1990—),男,博士,教授,博士生导师,从事煤田地质相关研究。地址:新疆维吾尔自治区乌鲁木齐市水磨沟区华瑞街777号,邮政编码:830047。E-mail: lixinwaxj@xju.edu.cn作者简介:韦波(1969—),男,博士,教授级高级工程师,从事煤炭与煤层气勘探开发研究与管理工作。地址:新疆维吾尔自治区乌鲁木齐市高新区四平路266号,邮政编码:830047。E-mail: weibo_156@163.com
基金资助:
WEI Bo1(
), YANG Shuguang2, LI Xin1,3(
), TANG Zhuyun2, ZHANG Na4, WANG Bo4, ZHAO Chen4, LI Jinru1, ZHAO Zhengwei2, FENG Shuo1, JIA Chao1
Received:2024-09-18
Online:2025-10-24
Published:2025-12-26
摘要:
新疆富油煤资源禀赋优势显著,其高效清洁开发利用有助于保障油气资源供给,促进深部煤炭资源有效利用,改善传统煤炭燃烧带来的环境问题。目前,新疆在富油煤资源赋存特征、分布规律及浅部开发利用等方面取得一定突破,但在深部富油煤原位转化及多能源协同开发等关键技术攻关方面仍存在瓶颈。研究从新疆富油煤地质资源量、煤基油气资源量、地面开发利用技术、地下原位热解-气化开发技术、附产CO2地质利用封存、多能互补协同开发及国家级示范区建设等角度出发,剖析了新疆富油煤开发利用产业现状,并提出了发展建议。研究结果包括:①新疆富油煤资源主要富集于东部三塘湖盆地、巴里坤盆地和吐哈盆地,利用地质块段法、体积法和丰度法,初步预测新疆东部侏罗系1 000 m以浅富油煤资源量556.6×108 t、煤中焦油资源量65.9×108 t;②新疆富油煤地面气化热解提质与煤基化学品制备技术较成熟,已实现以富油煤为原料生产洁净煤、以煤焦油为原料生产煤基氢化油等油品、以净化后煤气为原料生产甲醇和乙二醇等;③提出了富油煤原位热解-气化一体化开发技术体系,包括地质选址评价技术、原位炉体构建技术、煤层原位加热技术和强化抽采技术;④构建了富油煤煤化工-新能源多能互补协同开发技术路径,主要是利用新能源制氢,为富油煤热解加氢制备化工产品提供氢原料、为富油煤热解-气化炉加热提供热能、为富油煤热解提质炼焦提供氢原料;⑤建议新疆建设富油煤开发利用国家级示范区,包括富油煤地面煤化工产业示范区、深部富油煤原位热解气化煤基油气产业示范区、富油煤化工附产CO2地质利用产业示范区、深部富油煤原位热解半焦CO2封存示范区及“富油煤-新能源”多能互补协同开发示范区等,促进新疆富油煤产业高效、可持续发展。
中图分类号:
WEI Bo,YANG Shuguang,LI Xin, et al. Current status and development directions of surface and in-situ low-carbon development and utilization technologies for oil-rich coal in Xinjiang[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(6): 959-971.
表1
新疆东部地区1 000 m以浅煤中焦油资源估算量"
| 地区 | 煤炭资源估算量/108 t | 可采煤层数/层 | 平均焦油产率/% | 焦油资源估算量/108 t | 类型 |
|---|---|---|---|---|---|
| 汉水泉勘查区 | 3 01.7 | 9 | 13.67 | 41.25 | 高油煤 |
| 库木苏勘查区 | 59.48 | 6 | 13.49 | 8.02 | 高油煤 |
| 条湖勘查区 | 79.68 | 6 | 8.30 | 6.61 | 富油煤 |
| 石头梅勘查区 | 33.75 | 1 | 7.08 | 2.39 | 含油煤 |
| 英格库勒勘查区 | 11.59 | 2 | 10.79 | 1.25 | 富油煤 |
| 白石湖勘查区 | 16.59 | 4 | 11.39 | 1.89 | 富油煤 |
| 黑眼泉勘查区 | 1.26 | 1 | 8.56 | 0.11 | 富油煤 |
| 别斯库都克勘查区 | 2.36 | 2 | 10.70 | 0.25 | 富油煤 |
| 吉郎德勘查区 | 2.25 | 8 | 9.22 | 0.21 | 富油煤 |
| 大南湖勘查区 | 47.94 | 7 | 8.26 | 3.96 | 富油煤 |
表2
富油煤原位热解气化地质选区选址评价指标体系"
| 大类 | 亚类 | 分类评价级别 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Ⅰ类(优) | Ⅱ类(良) | Ⅲ类(中) | Ⅳ类(劣) | |||||||
| 煤岩煤质条件 | 煤种 | 褐煤 | 长焰煤 | 瘦煤 | 气煤 | 肥煤 | 贫煤 | 无烟煤 | 焦煤 | |
| 水分/% | [0,15] | (15,35] | (35,55] | >55 | ||||||
| 灰分质量分数/% | [0,10] | (10~20] | (20,50] | >50 | ||||||
| 挥发分质量分数/% | >37 | [ | [10,20) | <10 | ||||||
| 硫分/% | [0,1.00] | (1.00,3.00] | (3.00,4] | >4 | ||||||
| 煤层赋存条件 | 煤层厚度/m | 5 | (5,15] | [2,5) | >15 | <2 | ||||
| 煤层倾角/(°) | 35 | [12,35) | (35,70] | <12 | >70 | |||||
| 煤层埋深/m | [500,1 000) | [100,500) | [1 000,2 000] | <100 | >2 000 | |||||
| 夹矸系数/% | <20 | [20,30) | [ | >60 | ||||||
| 夹矸层数 | 0 | 1 | 2 | >2 | ||||||
| 煤厚变异系数/% | ≥95 | [85,95) | (75,85) | 75 | ||||||
| 围岩条件 | 顶板岩性 | 石灰岩 | 泥岩 | 砂质泥岩 | 粉砂岩 | 细砂岩 | 中砂岩 | 粗砂岩 | 砾岩 | |
| 底板岩性 | 石灰岩 | 泥岩 | 砂质泥岩 | 粉砂岩 | 细砂岩 | 中砂岩 | 粗砂岩 | 砾岩 | ||
| 封闭条件 | 距断层距离/km | <0.5 | [0.5,1) | [1,1.5) | ≥1.5 | |||||
| 距矿井距离/km | ≥5 | (3.2,5) | (1.6,3.2] | ≤1.6 | ||||||
| 水文地质条件 | 相对涌水量/(m3/t) | <1 | [1,2) | [ | >5 | |||||
| 距顶板含水层距离/m | >100 | [ | [30,50) | <30 | ||||||
| 环境条件 | 氟/(μg/g) | ≤100 | (100,200] | (200,400] | >400 | |||||
| 砷/(μg/g) | ≤4 | (4,25] | (25,80] | >80 | ||||||
| 氯/(μg/g) | ≤0.05 | (0.05,0.15] | (0.15,0.30] | >0.30 | ||||||
| 磷/(μg/g) | ≤0.01 | (0.01,0.05] | (0.05,0.10] | >0.10 | ||||||
表3
不同原位加热技术基本原理及技术特点"
| 加热方式 | 基本原理 | 典型技术 | 技术阶段 | 加热载体 | 主要优点 | 主要缺点 |
|---|---|---|---|---|---|---|
| 传导加热 | 利用电阻或导电介质直接加热,通过热量传导加热岩层 | ICP技术 | 先导试验 | 电加热器 | 加热方式灵活,设备相对简单,易于控制 | 热量传递慢,加热时间长,地下水对加热干扰大 |
| Electrofrac技术 | 先导试验 | 石油焦 | ||||
| GFC技术 | 实验室 | 燃料电池 | ||||
| HVF技术 | 实验室 | 电阻 | ||||
| 对流加热 | 向岩层中注入高温载热气体,通过高温气体对岩层进行加热 | MTI技术 | 大件试验 | 水蒸气 | 加热效率高,油气易产出,载热气体可循环使用 | 热量输送过程损失大,注热对井口和井身要求高 |
| CRUSH技术 | 试验计划 | CO2 | ||||
| CCR技术 | 试验计划 | 烃类蒸汽 | ||||
| Petro-Probe技术 | 实验室 | 空气 | ||||
| 化学加热 | 通过有机质的原位氧化或燃烧放热对岩层进行加热 | 原位燃烧技术 | 先导试验 | N2 | 加热速度快,能量利用率高 | 控制工艺复杂 |
| 局部化学法技术 | 先导试验 | N2 | ||||
辐射 加热 | 利用高频电磁波辐射基础上的交变电场作用使岩层自身发热 | RF/CF技术 | 实验室 | 高频电磁波 | 加热范围可选择,能量利用率高 | 技术成熟度低,能量传递范围有限 |
| LLNL技术 | 实验室 | 高频电磁波 | ||||
| 微波技术 | 试验计划 | 微波 |
| [1] | 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24(3): 49-57. |
| WANG Shuangming, WANG Hong, REN Shihua, et al. Potential analysis and technical conception of exploitation and utilization of tar-rich coal in Western China[J]. Strategic Study of CAE, 2022, 24(3): 49-57. | |
| [2] | 王双明, 师庆民, 孙强, 等. 富油煤原位热解技术战略价值与科学探索[J]. 煤田地质与勘探, 2024, 52(7): 1-13. |
| WANG Shuangming, SHI Qingmin, SUN Qiang, et al. Strategic value and scientific exploration of in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 1-13. | |
| [3] | 段中会, 杨甫, 王振东, 等. 陕北富油煤地下原位热解先导试验[J]. 煤田地质与勘探, 2024, 52(7): 14-24. |
| DUAN Zhonghui, YANG Fu, WANG Zhendong, et al. Pilot experiment for underground in-situ pyrolysis of tar-rich coal in the northern Shaanxi Province[J]. Coal Geology & Exploration, 2024, 52(7): 14-24. | |
| [4] | 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377. |
| WANG Shuangming, SHI Qingmin, WANG Shengquan, et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377. | |
| [5] | 周安宁, 张致, 陈永安, 等. 铈改性磁性核壳HZSM-5催化富油煤热解研究[J]. 煤田地质与勘探, 2024, 52(7): 144-155. |
| ZHOU Anning, ZHANG Zhi, CHEN Yong’an, et al. Exploring the pyrolysis of tar-rich coals under the catalysis of cerium-modified magnetic core-shell HZSM-5[J]. Coal Geology & Exploration, 2024, 52(7): 144-155. | |
| [6] | 王双明, 鲍园, 郝永辉, 等. 富油煤研究进展与趋势[J]. 煤田地质与勘探, 2024, 52(4): 1-11. |
| WANG Shuangming, BAO Yuan, HAO Yonghui, et al. Research on tar-rich coals: Progress and prospects[J]. Coal Geology & Exploration, 2024, 52(4): 1-11. | |
| [7] | 桑树勋, 李瑞明, 刘世奇, 等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报, 2024, 49(1): 563-585. |
| SANG Shuxun, LI Ruiming, LIU Shiqi, et al. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society, 2024, 49(1): 563-585. | |
| [8] | 乔军伟, 王昌建, 赵泓超, 等. 基于煤岩煤质多元指标的BP神经网络焦油产率预测方法研究[J]. 煤田地质与勘探, 2024, 52(7): 108-118. |
| QIAO Junwei, WANG Changjian, ZHAO Hongchao, et al. A method for predicting the tar yield of tar-rich coals based on the BP neural network using multiple indicators of coal petrography and coal quality [J]. Coal Geology & Exploration, 2024, 52(7): 108-118. | |
| [9] | 田华, 王前吉, 张晴, 等. 富油煤热解焦油在粉砂中的自然降解与挥发行为[J]. 环境工程学报, 2023, 17(8): 2665-2673. |
| TIAN Hua, WANG Qianji, ZHANG Qing, et al. Natural degradation and volatilization of oil-rich coal pyrolysis tar in silty sand[J]. Chinese Journal of Environmental Engineering, 2023, 17(8): 2665-2673. | |
| [10] | 王振东, 段中会, 杨甫, 等. 富油煤地下原位热解井下加热器研究现状及展望[J]. 煤田地质与勘探, 2024, 52(7): 35-45. |
| WANG Zhendong, DUAN Zhonghui, YANG Fu, et al. Downhole heaters for in-situ pyrolysis of tar-rich coals: A review and prospects[J]. Coal Geology & Exploration, 2024, 52(7): 35-45. | |
| [11] | 程坤. 我国煤炭资源勘查开发主要问题及对策措施[J]. 中国煤炭, 2024, 50(7): 1-7. |
| CHENG Kun. Research on the main problems and countermeasures of coal resources exploration and development in China[J]. China Coal, 2024, 50(7): 1-7. | |
| [12] | 薛香玉, 王长安, 邓磊, 等. 基于全生命周期的富油煤原位热解碳排放[J]. 煤炭学报, 2023, 48(4): 1773-1781. |
| XUE Xiangyu, WANG Chang’an, DENG Lei, et al. Carbon emissions from in-situ pyrolysis of tar-rich coal based on full life cycle analysis method[J]. Journal of China Coal Society, 2023, 48(4): 1773-1781. | |
| [13] | 付德亮, 段中会, 杨甫, 等. 富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J]. 煤炭学报, 2023, 48(4): 1759-1772. |
| FU Deliang, DUAN Zhonghui, YANG Fu, et al. Key problems in in-situ pyrolysis of tar-rich coal drilling for extraction of coal-based oil and gas resources[J]. Journal of China Coal Society, 2023, 48(4): 1759-1772. | |
| [14] | 王双明, 孙强, 胡鑫, 等. 不同气氛下富油煤受热裂隙演化及热解动力学参数变化[J]. 煤炭科学技术, 2024, 52(1): 15-24. |
| WANG Shuangming, SUN Qiang, HU Xin, et al. Fissure evolution and variation of pyrolysis kinetics parameters of tar-rich coal during heat treatment under different atmosphere[J]. Coal Science and Technology, 2024, 52(1): 15-24. | |
| [15] | 王苗, 王长安, 宁星, 等. 富油煤原位热解技术研究现状及进展[J]. 煤炭学报, 2024, 49(9): 3969-3984. |
| WANG Miao, WANG Chang’an, NING Xing, et al. Research progress of in-situ pyrolysis technology for tar-rich coal[J]. Journal of China Coal Society, 2024, 49(9): 3969-3984. | |
| [16] | 东振, 张梦媛, 陈艳鹏, 等. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析[J]. 煤炭学报, 2023, 48(10): 3789-3805. |
| DONG Zhen, ZHANG Mengyuan, CHEN Yanpeng, et al. Analysis on the occurrence characteristics and resource potential of tar-rich coal in Santanghu and Turpan-Hami Basins[J]. Journal of China Coal Society, 2023, 48(10): 3789-3805. | |
| [17] | 曹景沛, 姚乃瑜, 庞新博, 等. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
| CAO Jingpei, YAO Naiyu, PANG Xinbo, et al. Research progress and development history of coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. | |
| [18] | 田华, 张若琳, 王前吉, 等. 富油煤原位热解典型污染物时空分布特征[J]. 煤田地质与勘探, 2024, 52(7): 64-72. |
| TIAN Hua, ZHANG Ruolin, WANG Qianji, et al. Spatiotemporal distributions of typical contaminants from the in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 64-72. | |
| [19] | 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1): 45-60. |
| WANG Shuangming, SHEN Yanjun, SUN Qiang, et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society, 2022, 47(1): 45-60. | |
| [20] | 王佟, 张博, 王庆伟, 等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探, 2017, 45(1): 1-8. |
| WANG Tong, ZHANG Bo, WANG Qingwei, et al. Green coal resources in China: Concept, characteristics and assessment[J]. Coal Geology & Exploration, 2017, 45(1): 1-8. | |
| [21] | 梁丽彤, 黄伟, 张乾, 等. 低阶煤催化热解研究现状与进展[J]. 化工进展, 2015, 34(10): 3617-3622+3675. |
| LIANG Litong, HUANG Wei, ZHANG Qian, et al. Research status and advances in catalytic pyrolysis of low-rank coal[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3617-3622+3675. | |
| [22] | 王向辉, 门卓武, 许明, 等. 低阶煤粉煤热解提质技术研究现状及发展建议[J]. 洁净煤技术, 2014, 20(6): 36-41. |
| WANG Xianghui, Zhuowu MEN, XU Ming, et al. Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technology, 2014, 20(6): 36-41. | |
| [23] | 马丽, 段中会, 杨甫, 等. “双碳”背景下煤炭原位地下热解采油意义研究[J]. 中国煤炭地质, 2022, 34(4): 5-7. |
| MA Li, DUAN Zhonghui, YANG Fu, et al. Study on the significance of coal in-situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J]. Coal Geology of China, 2022, 34(4): 5-7. | |
| [24] | 俞尊义, 郭伟, 杨盼曦, 等. 陕北富油煤热解提油产物分布特性研究[J]. 煤田地质与勘探, 2024, 52(7): 176-188. |
| YU Zunyi, GUO Wei, YANG Panxi, et al. Distributions of products from the pyrolysis of tar-rich coals for tar extraction in northern Shaanxi Province, China[J]. Coal Geology & Exploration, 2024, 52(7): 176-188. | |
| [25] | 邹卓, 张莉, 孙杰, 等. 富油煤热解技术及利用前景研究[J]. 中国煤炭地质, 2022, 34(11): 31-34. |
| ZOU Zhuo, ZHANG Li, SUN Jie, et al. Study on Pyrolysis Technology and Utilization Prospect of Oil-rich Coal[J]. Coal Geology of China, 2022, 34(11): 31-34. | |
| [26] | 范振华, 李绍京, 寇竹娟. 煤焦化过程中污染物的产生与控制[J]. 煤炭转化, 1997, (4): 34-40. |
| FAN Zhenhua, LI Shaojing, KOU Zhujuan. Producing and controlling of the pollutant in the coal’s coking process[J]. Coal Conversation, 1997, (4): 34-40. | |
| [27] | 狄子琛, 雷飞霞, 常成功, 等. 焦化行业碳氢资源利用潜力与低碳路径评价[J]. 化工进展, 2024, 43(5): 2862-2871. |
| DI Zichen, LEI Feixia, CHANG Chenggong, et al. Evaluation of hydrocarbon resource utilization potential and low-carbon path in the coking industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2862-2871. | |
| [28] | 贾晓洋, 姜林, 夏天翔, 等. 焦化厂土壤中PAHs的累积、垂向分布特征及来源分析[J]. 化工学报, 2011, 62(12): 3525-3531. |
| JIA Xiaoyang, JIANG Lin, XIA Tianxiang, et al. Analysis on accumulation, distribution and origin of polycyclic aromatic hydrocarbons in soils under a coking plant[J]. CIESC Journal, 2011, 62(12): 3525-3531. | |
| [29] | 高浩. 陕北富油煤热解提油基础特性及煤焦油净化机理研究[D]. 西安: 西安科技大学, 2021. |
| GAO Hao. Basic characteristics of oil extraction from northern Shaanxi oil rich coal pyrolysis and purification mechanism of coal tar[D]. Xi’an: Xi’an University of Science and Technology, 2021. | |
| [30] | 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工, 2013, 44(1): 1-10. |
| DAI Houliang. Outlook of aromatics production technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 1-10. | |
| [31] | 张晓静. 中低温煤焦油加氢技术[J]. 煤炭学报, 2011, 36(5): 840-844. |
| ZHANG Xiaojing. Hydrogenating process for coal tar from mid-low-temperature coal carbonization[J]. journal of China coal society, 2011, 36(5): 840-844. | |
| [32] | 邱泽刚, 李壮壮, 李志勤. 中低温煤焦油转化利用技术研究进展[J]. 石油学报(石油加工), 2024, 40(4): 953-964. |
| QIU Zegang, LI Zhuangzhuang, LI Zhiqin. Research Progress in Conversion and Utilization Technology of Middle/Low-Temperature Coal Tar[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2024, 40(4): 953-964. | |
| [33] | 朱汉雄, 王一, 茹加, 等. “双碳”目标下推动能源技术区域综合示范的路径思考[J]. 中国科学院院刊, 2022, 37(4): 559-566. |
| ZHU Hanxiong, WANG Yi, RU Jia, et al. Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under “dual carbon” goals[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 559-566. | |
| [34] | 葛世荣, 刘淑琴, 刘金昌, 等. 能源强国目标下煤炭安全保供及高效降碳效力研究[J]. 中国工程科学, 2024, 26(4): 40-51. |
| GE Shirong, LIU Shuqin, LIU Jinchang, et al. Effectiveness of secure supply and carbon reduction in the coal sector for strengthening the energy power of China[J]. Strategic Study of CAE, 2024, 26(4): 40-51. | |
| [35] | 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021, 49(9): 1-8. |
| WANG Guofa, REN Shihua, PANG Yihui, et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2021, 49(9): 1-8. | |
| [36] | 葛世荣, 刘淑琴, 樊静丽, 等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报, 2024, 49(7): 2949-2972. |
| GE Shirong, LIU Shuqing, FAN Jingli, et al. Key technologies for low-carbon modern coal-based energy[J]. journal of China coal society, 2024, 49(7): 2949-2972. | |
| [37] | 周张锋, 李兆基, 潘鹏斌, 等. 煤制乙二醇技术进展[J]. 化工进展, 2010, 29(11): 2003-2009. |
| ZHOU Zhangfeng, LI Zhaoji, PAN Pengbin, et al. Progress in technologies of coal-based ethylene glycol synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2003-2009. | |
| [38] | 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15. |
| LIU Feng, CAO Wengjun, ZHANG Jianming, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China coal society, 2021, 46(1): 1-15. | |
| [39] | 胡耀青, 赵阳升, 杨栋, 等. 温度对褐煤渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1585-1590. |
| HU Yaoqing, ZHAO Yangsheng, YANG Dong, et al. Experimental study of effect of temperature on permeability characteristics of lignite [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1585-1590. | |
| [40] | 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. |
| XIE Heping, WANG Jinhua, WANG Guofa, et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. | |
| [41] | 王双明, 孙强, 胡鑫, 等. 煤炭原位开发地质保障[J]. 西安科技大学学报, 2024, 44(1): 1-11. |
| WANG Shuangming, SUN Qiang, HU Xin, et al. Geological guarantee for in-situ development of coal[J]. Journal of Xi’an University of Science and Technology, 2024, 44(1): 1-11. | |
| [42] | 唐颖, 吴晓丹, 李乐忠, 等. 富油煤原位热解地下加热技术及其高效工艺[J]. 洁净煤技术, 2023, 29(12): 42-50. |
| TANG Ying, WU Xiaodan, LI Lezhong, et al. Heating technology of in-situ pyrolysis for tar-rich coal and its high efficiency process[J]. Clean Coal Technology, 2023, 29(12): 42-50. | |
| [43] | 郭威, 刘召, 孙友宏, 等. 富油煤原位热解开发地下体系封闭方法探讨[J]. 煤田地质与勘探, 2023, 51(1): 107-114. |
| GUO Wei, LIU Zhao, SUN Youhong, et al. Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J]. Coal Geology & Exploration, 2023, 51(1): 107-114. | |
| [44] | 李改改, 姜鹏飞, 黄佳齐, 等. 富油煤热解过程动力学参数变化规律研究[J]. 煤炭技术, 2023, 42(10): 52-56. |
| LI Gaigai, JIANG Pengfei, HUANG Jiaqi, et al. Study on change of kinetic parameters of tar-rich coal during pyrolysis[J]. Coal Technology, 2023, 42(10): 52-56. | |
| [45] | 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668. |
| YUAN Shiyi, WANG Qiang. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668. | |
| [46] | 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, 8(2): 98-103. |
| YU Liandong. Distribution of tight oil resources in the world and the present situation and prospect of their extraction technology[J]. Special Oil and Gas Reservoirs, 2001, 8(2): 98-103. | |
| [47] | 计秉玉. 国内外油田提高采收率技术进展与展望[J]. 石油与天然气地质, 2012, 33(1): 111-117. |
| JI Bingyu. Progress and prospects of enhanced oil recovery technologies at home and abroad[J]. Oil and Gas Geology, 2012, 33(1): 111-117. | |
| [48] | 张磊. 基于可持续发展的新疆矿产资源开发利用研究[D]. 乌鲁木齐: 新疆大学, 2006. |
| ZHANG Lei. Exploitation on Xinjiang’s mineral resource based on the theory of sustainable development[D]. Urumqi: Xinjiang University, 2006. | |
| [49] | 葛世荣, 王兵, 冯豪豪, 等. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 2023, 25(5): 122-135. |
| GE Shirong, WANG Bing, FENG Haohao, et al. Dynamic carbon neutrality mode for coal-based energy systems and effectiveness assessment thereof[J]. Strategic Study of CAE, 2023, 25(5): 122-135. | |
| [50] | 吴志强, 杨盼曦, 郭伟, 等. 富油煤绿色低碳转化技术研究进展[J]. 绿色矿山, 2023, 1(1): 138-165. |
| WU Zhiqiang, YANG Panxi, GUO Wei, et al. Research progress on green and low⁃carbon conversion technology of oil⁃rich coal[J]. Journal of Green Mine, 2023, 1(1): 138-165. | |
| [51] | 杨甫, 程相强, 李明杰, 等. 富油煤原位热解多物理场演化规律数值模拟研究[J]. 煤田地质与勘探, 2024, 52(7): 25-34. |
| YANG Fu, CHENG Xiangqiang, LI Mingjie, et al. Numerical simulations of the evolutionary patterns of multi-physical fields during the in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 25-34. | |
| [52] | 来兴平, 方贤威. “双碳”目标驱动西部煤炭分阶控碳减熵增效与协同发展路径[J]. 西安科技大学学报, 2022, 42(5): 841-848. |
| LAI Xingping, FANG Xianwei. Exploration of carbon control, entropy reduction, efficiency increase and their coordinated development for coal in Western China under “Dual Carbon” target[J]. Journal of Xi’an University of Science and Technology, 2022, 42(5): 841-848. | |
| [53] | 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
| CHEN Zhaohui, GAO Shiqiu, XU Guangwen. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
| [54] | 徐建华. 西北地区3种新能源发电技术效能评估[J]. 系统仿真技术, 2018, 14(2): 140-144. |
| XU Jianhua. Efficiency evaluation of three new energy generation technologies in Northwest China[J]. System Simulation Technology, 2018, 14(2): 140-144. | |
| [55] | 黄文章, 袁建军, 石国峰, 等. 风电制氢与煤化工集成系统可行性分析[J]. 现代化工, 2021, 41(7): 5-8. |
| HUANG Wenzhang, YUAN Jianjun, SHI Guofeng, et al. Feasibility discussion about an integration system between hydrogen production by wind power and coal chemical industry[J]. Modern Chemical Industry, 2021, 41(7): 5-8. |
| [1] | 郭旭升, 李王鹏, 申宝剑, 胡宗全, 赵培荣, 黎茂稳, 高波, 冯动军, 刘雅利, 武晓玲, 苏建政. 中国石化探区和邻区油页岩原位开采选区评价 [J]. 油气藏评价与开发, 2025, 15(1): 1-10. |
|
||