[1] |
董大忠, 邹才能, 戴金星 , 等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016,27(3):397-406.
doi: 10.11764/j.issn.1672-1926.2016.03.0397
|
[2] |
邱中建, 邓松涛 . 中国非常规天然气的战略地位[J]. 天然气工业, 2012,32(1):1-5.
doi: 10.3787/j.issn.1000-0976.2012.01.001
|
[3] |
江怀友, 鞠斌山, 李治平 , 等. 世界页岩气资源现状研究[J]. 中外能源, 2014,19(3):14-22.
|
[4] |
郑军卫, 孙德强, 李小燕 , 等. 页岩气勘探开发技术进展[J]. 天然气地球科学 2011,22(3):511-517.
doi: 10.1007/s12182-011-0123-3
|
[5] |
苏玉亮, 盛广龙, 王文东 , 等. 页岩气藏多重介质耦合流动模型[J]. 天然气工业, 2016,36(2):52-59.
doi: 10.3787/j.issn.1000-0976.2016.02.007
|
[6] |
姚同玉, 黄延章, 李继山 . 页岩气在超低渗介质中的渗流行为[J]. 力学学报, 2012,44(6):990-995.
doi: 10.6052/0459-1879-12-047
|
[7] |
Al-Ahmadi H A, Wattenbarger R A. Triple-porosity models: one further step towards capturing fractured reservoirs heterogeneity[C]// paper SPE-149054-MS presented at the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, 15-18 May 2011, Al-Khobar, Saudi Arabia.
|
[8] |
Ezulike D O, Dehghanpour H . A model for simultaneous matrix depletion into natural and hydraulic fracture networks[J]. Journal of Natural Gas Science & Engineering, 2014,16(17):57-69.
doi: 10.1016/j.jngse.2013.11.004
|
[9] |
Tian L, Xiao C, Liu M , et al. Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix[J]. Journal of Natural Gas Science & Engineering, 2014,21(21):283-295.
doi: 10.1016/j.jngse.2014.08.001
|
[10] |
Thorstenson D C, Pollock D W . Gas transport in unsaturated porous media: The adequacy of Fick's law[J]. Reviews of Geophysics, 1989,27(1):61-78.
doi: 10.1029/RG027i001p00061
|
[11] |
田冷, 肖聪, 刘明进 , 等. 考虑页岩气扩散的多级压裂水平井产能模型[J]. 东北石油大学学报, 2014,38(5):93-102.
doi: 10.3969/j.issn.2095-4107.2014.05.012
|
[12] |
李勇明, 彭瑀, 王中泽 . 页岩气压裂增产机理与施工技术分析[J]. 西南石油大学学报(自然科学版), 2013,35(2):90-96.
doi: 10.3863/j.issn.1674-5086.2013.02.013
|
[13] |
钱斌, 张俊成, 朱炬辉 , 等. 四川盆地长宁地区页岩气水平井组“拉链式”压裂实践[J]. 天然气工业, 2015,35(1):81-84.
doi: 10.3787/j.issn.1000-0976.2015.01.010
|
[14] |
Raghavan R . Fractional diffusion: Performance of fractured wells[J]. Journal of Petroleum Science & Engineering, 2012, 92-93(4):167-173.
doi: 10.1016/j.petrol.2012.06.003
|
[15] |
孙洪广, 常爱莲, 陈文 , 等 . 反常扩散: 分数阶导数建模及其在环境流动中的应用[J]. 中国科学:物理学力学天文学, 2015,45(10):8-22.
doi: 10.1360/SSPMA2015-00313
|
[16] |
庞国飞, 陈文, 张晓棣 , 等. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015,36(11):1117-1134.
doi: 10.3879/j.issn.1000-0887.2015.11.001
|
[17] |
Obembe A D, Hossain M E, Abu-Khamsin S A . Variable-order derivative time fractional diffusion model for heterogeneous porous media[J]. Journal of Petroleum Science & Engineering, 2017,152:391-405.
doi: 10.1016/j.petrol.2017.03.015
|
[18] |
Albinali A, Ozkan E . Analytical modeling of flow in highly disordered, fractured nano-porous reservoirs[C]// paper SPE-180440-MS presented at the SPE Western Regional Meeting, 23-26 May 2016, Anchorage, Alaska,USA.
|
[19] |
Holy R W, Ozkan E . Apractical and rigorous approach for production data analysis in unconventional wells[C]// paper SPE-180240-MS presented at the SPE Low Perm Symposium, 5-6 May 2016, Denver, Colorado, USA.
|
[20] |
Obembe A D, Hossain M E, Mustapha K , et al. A modified memory-based mathematical model describing fluid flow in porous media[J]. Computers & Mathematics with Applications, 2016,73(6):1385-1402.
doi: 10.1016/j.camwa.2016.11.022
|
[21] |
Ozcan O, Sarak H, Ozkan E, et al. A trilinear flow model for a fractured horizontal well in a fractal unconventional reservoir[C]// paper SPE-170971-MS presented at the SPE Annual Technical Conference and Exhibition, 27-29 October 2014, Amsterdam, The Netherlands.
|
[22] |
Caputo M . Linear Models of Dissipation whose Q is almost Frequency Independent-II[J]. Geophysical Journal International, 1967,13(5):529-539.
doi: 10.4401/ag-5051
|
[23] |
Stehfest H . Algorithm 368: Numerical inversion of Laplace transforms[J]. Communications of the Acm, 1970,13(1):47-49.
doi: 10.1145/361953.361969
|
[24] |
同登科, 陈钦雷 . 关于Laplace数值反演Stehfest方法的一点注记[J]. 石油学报, 2001,22(6):91-92.
doi: 10.3321/j.issn:0253-2697.2001.06.020
|