油气藏评价与开发 ›› 2026, Vol. 16 ›› Issue (1): 52-60.doi: 10.13809/j.cnki.cn32-1825/te.2025248

• 方法理论 • 上一篇    下一篇

超临界CO2对深层超低渗火山岩储层扩孔增渗效果研究

陈秋宇1,2,3(), 赵众从1,2,3(), 李大铭4, 赵小龙5, 周鹏程6, 徐德培1,2,3, 孙晓辉1,2,3, 侯艳鑫1,2,3, 华长俊1,2,3   

  1. 1.长江大学石油工程学院,湖北 武汉 430100
    2.油气钻完井技术国家工程研究中心,湖北 武汉 430100
    3.油气钻井技术国家工程实验室防漏堵漏研究室 油气钻采工程湖北省重点实验室,湖北 武汉 430100
    4.吉林油田公司扶余采油厂,吉林 松原 138000
    5.中国石化胜利油田分公司石油工程技术研究院,山东 东营 257000
    6.陕西华天能源科技有限公司,陕西 西安 710000
  • 收稿日期:2025-05-26 发布日期:2026-01-06 出版日期:2026-01-26
  • 通讯作者: 赵众从(1983—),男,博士,副教授,从事压裂增产及非常规储层开发研究。地址:湖北省武汉市蔡甸区大学路111号长江大学武汉校区,邮政编码:430100。E-mail:zzc@yangtzeu.edu.cn
  • 作者简介:陈秋宇(1999—),男,在读硕士研究生,从事压裂增产及非常规储层开发研究。地址:湖北省武汉市蔡甸区大学路111号长江大学武汉校区,邮政编码:430100。E-mail:1397237873@qq.com
  • 基金资助:
    国家自然科学基金项目“调频调幅水力振荡强化酸液解堵特性与调控机制”(52174017)

Study on effectiveness of supercritical CO2 on pore enlargement and permeability enhancement in deep ultra-low-permeability volcanic reservoirs

CHEN Qiuyu1,2,3(), ZHAO Zhongcong1,2,3(), LI Daming4, ZHAO Xiaolong5, ZHOU Pengcheng6, XU Depei1,2,3, SUN Xiaohui1,2,3, HOU Yanxin1,2,3, HUA Changjun1,2,3   

  1. 1.School of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
    2.National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Wuhan, Hubei 430100, China
    3.Leak Resistance & Sealing Technology Research Department of National Engineering Laboratory of Petroleum Drilling Technology, Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan, Hubei 430100, China
    4.Fuyu Oil Production Plant, Jilin Oilfield Company, Songyuan, Jilin 138000, China
    5.Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Company, Dongying, Shandong 257000, China
    6.Shaanxi Huatian Energy Technology Co., Ltd., Xi’an, Shaanxi 710000, China
  • Received:2025-05-26 Online:2026-01-06 Published:2026-01-26

摘要:

松辽盆地火石岭组深层火山岩储层受超低渗透率与极致密性制约,经济高效开发面临严峻挑战,同时也为CCUS背景下的CO2利用与封存提供了潜在目标储层。研究针对此难题探索并验证了基于超临界CO2(SC-CO2)协同地层水的水岩作用改造方法。通过构建SC-CO2饱和溶蚀反应实验,结合X射线衍射(XRD)矿物定量分析、场发射扫描电镜(FE-SEM)微观形貌表征及岩石力学性能测试,系统研究了SC-CO2协同地层水对储层的改造效果。实验结果表明:SC-CO2优先溶蚀斜长石和方解石等矿物,导致黏土矿物含量显著降低,并形成微小裂缝和孔道。基于CT扫描构建的三维数字岩心模型进一步揭示,经SC-CO2处理后,储层孔隙结构得到显著改善:配位数(CN)大于3的优势渗流通道占比提升约11%,喉道半径大于6 μm的孔隙体积增加16.5%以上,模拟渗透率与实际气测渗透率变化趋势一致,同比增幅均超过90%。同时,岩石力学测试显示:SC-CO2作用后岩样抗压强度下降19.6%,弹性模量降低13.2%,泊松比增加8.7%,结合扫描电子显微镜(SEM)观察证实其通过力学弱化可有效诱发次生裂缝网络。研究表明:SC-CO2凭借其纳米级分子扩散能力与零界面张力特性,能够有效进入微纳级孔隙,并与孔隙束缚水形成碳酸,通过水岩反应深度溶蚀储层内部,有效弥补了传统酸液难以触及微纳米级孔隙的局限。该方法为深层火山岩储层的经济高效开发及CCUS技术中的CO2协同埋存与增渗改造提供了新的理论依据与技术路径。

关键词: 超临界CO2, 火山岩储层, 超低渗, 水岩反应, 溶蚀作用, 储层改造

Abstract:

The deep volcanic reservoirs of the Huoshiling Formation in the Songliao Basin face severe challenges for economically efficient development due to ultra-low permeability and extreme compactness, while also presenting potential target reservoirs for CO2 utilization and storage under CCUS scenarios. To address this challenge, this study explored and verified a water-rock interaction modification method based on supercritical carbon dioxide (SC-CO2) synergized with formation water. Through SC-CO2 saturation dissolution reaction experiments, combined with X-ray diffraction (XRD) mineral quantitative analysis, field emission scanning electron microscopy (FE-SEM) microstructural characterization, and rock mechanical property testing, the modification effects of SC-CO2 synergized with formation water on the reservoir were systematically investigated. The experimental results showed that SC-CO2 preferentially dissolved minerals such as plagioclase and calcite, leading to a significant reduction in clay mineral content and the formation of microscopic fractures and pore throats. Three-dimensional digital core models constructed from CT scans further revealed that SC-CO2 treatment significantly improved reservoir pore structure: the proportion of dominant flow channels with coordination numbers (CN) >3 increased by approximately 11%, while pore volumes with throat radii >6 μm expanded by over 16.5%. The trends of simulated permeability were consistent with the changes in actual gas permeability measurements, both showing year-on-year increases exceeding 90%. Meanwhile, rock mechanical tests indicated that after SC-CO2 treatment, the compressive strength of rock samples decreased by 19.6%, the elastic modulus decreased by 13.2%, and the Poisson’s ratio increased by 8.7%. Combined with scanning electron microscopy (SEM) observations, these results confirmed that mechanical weakening effectively induced a secondary fracture network. The study indicated that SC-CO2, owing to its nanoscale molecular diffusion capability and zero interfacial tension, could effectively penetrate micro- and nano-scale pores and react with pore-bound water to form carbonates. Through water-rock interactions, it deeply dissolved the interior of the reservoir, effectively overcoming the limitation of traditional acid fluids in accessing micro- and nano-scale pores. This method provides new theoretical foundations and technical pathways for the cost-effective development of deep volcanic reservoirs and for CO2 co-storage and enhanced recovery modification in CCUS technology.

Key words: supercritical CO2, volcanic reservoir, ultra-low permeability, water-rock reaction, dissolution, reservoir stimulation

中图分类号: 

  • TE377