油气藏评价与开发 ›› 2026, Vol. 16 ›› Issue (1): 43-51.doi: 10.13809/j.cnki.cn32-1825/te.2025034

• 方法理论 • 上一篇    下一篇

CO2-热剂协同作用下深层稠油乳化微观机理研究

林雨彤1(), 张琦2, 刘成果1, 彭明国1(), 李雨洁1, 赵静1, 刘润1, 李秋1, 刘雅莉1   

  1. 1.常州大学石油与天然气工程学院,江苏 常州 213164
    2.中国石油国际勘探开发有限公司,北京 102206
  • 收稿日期:2025-01-17 发布日期:2026-01-06 出版日期:2026-01-26
  • 通讯作者: 彭明国(1976—),男,博士,教授,从事油气田开发研究。地址:江苏省常州市武进区滆湖中路21号常州大学,邮政编码:213164。E-mail:pmg@cczu.edu.cn
  • 作者简介:林雨彤(2000—),女,在读硕士研究生,从事油气田开发研究。地址:江苏省常州市武进区滆湖中路21号常州大学,邮政编码:213164。E-mail:s23040857033@smail.cczu.edu.cn
  • 基金资助:
    中国石油-常州大学创新联合体资助项目“多元热流体开发稠油关键配套工艺技术研究”(2021DQ06);常州市第四批领军创新人才引进培养项目“入选颗粒在气固流化床中动力学特性及分选调控机制”(CQ20230082);国家自然科学基金青年基金资助项目“两亲纳米片泡沫驱体系再生性能及高效驱油机理研究”(52304020)

Study on microscopic mechanism of deep heavy oil emulsification under synergistic CO2-thermal agent conditions

LIN Yutong1(), ZHANG Qi2, LIU Chengguo1, PENG Mingguo1(), LI Yujie1, ZHAO Jing1, LIU Run1, LI Qiu1, LIU Yali1   

  1. 1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
    2.PetroChina International Petroleum Exploration and Development Co., Ltd., Beijing 102206, China
  • Received:2025-01-17 Online:2026-01-06 Published:2026-01-26

摘要:

稠油储量约占全球石油剩余探明储量的70%,但其有效开发仍属于世界级难题。研究基于碳捕集、利用与封存(CCUS)技术背景,构建表面完全羟基化的SiO2纳米孔道模拟真实油藏环境,采用分子动力学模拟(MD)方法,深入剖析“CO2-热剂协同”作用下深层稠油乳化过程的微观机理。研究内容聚焦三个方面:一是探究表面活性剂SDS(十二烷基硫酸钠)对深层稠油在SiO2纳米孔中乳化效果的影响,对比有无表面活性剂时油滴的乳化行为与稳定性;二是通过拉伸动力学模拟(SMD),分析油滴在SiO2孔道中受力与运动过程,揭示油滴拉伸与破裂的关键因素;三是研究150 ℃高温下“热+化学剂+CO2”协同作用的深层稠油乳化机理,探讨CO2-热剂协同的乳化效果。结果表明:①添加表面活性剂可显著改善乳化稳定性,使油滴溶剂可及表面积平均增加7.4%,并优化油滴空间分布;②油滴运动需克服孔道表面水化层阻力,质心位移与外力呈三阶段演化关系;③CO2分子与热剂协同作用能有效促进深层稠油乳化,使油滴扩散系数达5.733×10-9 m2/s,较单独热剂条件提高31.0%。该研究为CO2-热剂协同条件下深层稠油乳化提供了新的理论依据,也为实际油田开采中深层稠油的高效提取提供了潜在技术参考。

关键词: 深层稠油乳化, 表面活性剂, CO2, 分子动力学模拟, 拉伸动力学

Abstract:

Heavy oil accounts for about 70% of the world’s remaining proven crude oil reserves, yet its efficient development remains a significant challenge worldwide. Based on the carbon capture, utilization and storage (CCUS) framework, this study constructed silica nanochannels with fully hydroxylated surfaces to simulate real reservoir conditions. Molecular dynamics (MD) simulations were employed to explore the microscopic mechanisms of deep heavy oil emulsification under synergistic CO2-thermal agent conditions. The study focused on three aspects. First, the influence of surfactant sodium dodecyl sulfate (SDS) on the emulsification performance of deep heavy oil in silica nanopores was studied, and emulsification behaviors and oil droplet stability with and without surfactants were compared. Second, steered molecular dynamics (SMD) simulations were used to analyze the forces and motion of oil droplets in silica channels, which revealed the key factors affecting droplet stretching and rupture. Finally, the emulsification mechanism under synergistic “thermal + chemical agent + CO2” conditions at 150 ℃ was investigated, and the emulsification performance of the CO2-thermal agent synergy was explored. The results showed that: (1) The addition of surfactants significantly enhanced emulsification stability, increasing the solvent accessible surface area (SASA) of oil droplets by 7.4% on average while optimizing their spatial distribution. (2) Oil droplet migration must overcome the resistance from the channel’s hydration layer, with the center-of-mass displacement exhibiting a three-stage evolution relationship with the external force. (3) The synergistic interaction between CO2 and thermal agents could effectively accelerate the emulsification process of deep heavy oil, resulting in an oil droplet diffusion coefficient of 5.733×10-9 m2/s, which marked a 31.0% increase compared to the condition with thermal agents alone. This study provides a new theoretical basis for understanding the microscopic mechanisms of deep heavy oil emulsification under CO2-thermal agent synergy while offering potential technical references for efficient deep heavy oil extraction in practical oilfield operations.

Key words: deep heavy oil emulsification, surfactant, CO2, molecular dynamics simulation, stretching molecular dynamics

中图分类号: 

  • TE39