[1] |
李睿姗, 何建华, 唐银明 , 等. 稠油油藏氮气辅助蒸汽增产机理试验研究[J]. 石油天然气学报, 2006,28(1):72-75.
|
[2] |
王元基, 何江川, 廖广志 , 等. 国内火驱技术发展历程与应用前景[J]. 石油学报, 2012,33(5):909-914.
|
[3] |
张旭, 刘建仪, 孙良田 , 等. 注空气低温氧化提高轻质油气藏采收率研究[J]. 天然气工业, 2004,24(4):78-80.
|
[4] |
PU W F, ZHAO S, PAN J J , et al. Effect of low-temperature oxidation of light oil on oil recovery during high pressure air injection[J]. Petroleum Science and Technology, 2018,36(13):937-943.
|
[5] |
HUANG S, SHENG J J . An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments[J]. Fuel, 2017,210:98-106.
|
[6] |
ZHANG L, DENG J, WANG L , et al. Low-temperature oxidation characteristics and its effect on the critical coking temperature of heavy oils[J]. Energy & Fuels, 2015,29(2):538-545.
|
[7] |
ZHAO S, PU W F, YUAN C D , et al. Thermal behavior and kinetic triplet of heavy crude oil and its SARA fractions during combustion by high pressure differential scanning calorimetry[J]. Energy & Fuels, 2019,33(4):3176-3186.
|
[8] |
KÖK M V . Effect of clay on crude oil combustion by thermal analysis techniques[J]. Journal of Thermal Analysis & Calorimetry, 2006,84(2):361-366.
|
[9] |
KÖK M V, Gundogar A S . Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 2010,99(3):779-783.
|
[10] |
LIU P G, PU W F, LI Y B , et al. Low-temperature isothermal oxidation of crude oil[J]. Petroleum Science and Technology, 2016,34(9):838-844.
|
[11] |
PU W F, PANG S S, JIA H . Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics[J]. Journal of Petroleum Science & Engineering, 2015,134:123-130.
|
[12] |
REN S R, GREAVES M, RATHBONE R R . Oxidation kinetics of north sea light crude oils at reservoir temperature[J]. Chemical Engineering Research and Design, 1999,77:385-394.
|
[13] |
YUAN C D, VARFOLOMEEV M A, EMELIANOV D A , et al. Oxidation behavior of light crude oil and its SARA fractions characterized by TG and DSC techniques: differences and connections[J]. Energy & Fuels, 2018,32:801-808.
|
[14] |
ZHAO S, PU W F, VARFOLOMEEV M A , et al. Comprehensive investigations into low temperature oxidation of heavy crude oil[J]. Journal of Petroleum Science & Engineering, 2018,171:835-842.
|
[15] |
YUAN C D, PU W F, Jin F Y , et al. Characterizing the fuel deposition process of crude oil oxidation in air injection[J]. Energy & Fuels, 2015,29(11):7622-7629.
|
[16] |
PU W F, LIU P G, LI Y B , et al. Thermal Characteristics and Combustion Kinetics Analysis of Heavy Crude Oil Catalyzed by Metallic Additives[J]. Industrial & Engineering Chemistry Research, 2015,54(46):11525-11533.
|
[17] |
WEI B, ZOU P, SHANG J , et al. Integrative determination of the interactions between SARA fractions of an extra-heavy crude oil during combustion[J]. Fuel, 2018,234:850-857.
|
[18] |
ZHAO S, PU W F, SUN B S , et al. Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fraction[J]. Fuel, 2019,239:117-125.
|
[19] |
ZHAO S, PU W F, HOU J F , et al. Low-temperature oxidation and thermal kinetics analysis of light and medium crude oil[J]. Petroleum Science & Technology, 2018,36(7):540-546.
|