油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (1): 64-70.doi: 10.13809/j.cnki.cn32-1825/te.2020.01.010
段承琏,魏风玲,魏瑞玲,刘芳,刘静,吴小丁
收稿日期:
2019-07-22
出版日期:
2020-02-26
发布日期:
2020-02-04
作者简介:
段承琏(1987 —),女,本科,工程师,主要从事采气工艺的相关研究及推广工作。通讯地址:河南省濮阳市中原东路石油工程技术研究院,邮政编码:457000。E-mail:duanclw@Foxmail.com
基金资助:
DUAN Chenglian,WEI Fengling,WEI Ruiling,LIU Fang,LIU Jing,WU Xiaoding
Received:
2019-07-22
Online:
2020-02-26
Published:
2020-02-04
摘要:
彭水区块属于常压页岩气藏,压裂投产后无法自喷。在正常生产中也有地层水产出,由于地层能量不足、产气量低无法携液生产,因此,排采需求贯穿整个生产阶段。由于排液量变化大,不同开采阶段缺乏对应的合理排采方式,彭水页岩气的排液效率较低。为了确定适合彭水区块的高效排采方式,针对区块的排液特点,从经济和技术角度综合评价、优选了电潜泵+气举复合排采、同心管(小直径管)排采、自产气压缩机气举排采、外输气气举排采方式,形成了一套适合彭水区块常压页岩气的排采技术,气举排液的返排率达到72 %,对提高彭水页岩气的开发效益具有一定的指导意义。
中图分类号:
段承琏,魏风玲,魏瑞玲,刘芳,刘静,吴小丁. 彭水区块常压页岩气高效排采技术研究[J]. 油气藏评价与开发, 2020, 10(1): 64-70.
DUAN Chenglian,WEI Fengling,WEI Ruiling,LIU Fang,LIU Jing,WU Xiaoding. High-efficient drainage technology of shale gas reservoirs with normal pressure in Pengshui Block[J]. Reservoir Evaluation and Development, 2020, 10(1): 64-70.
表4
连续油管和套管携液能力模拟结果"
井底流压/MPa | 不同管径管柱的最小携液气量/(104 m3·d-1) | ||
---|---|---|---|
32 mm | 38 mm | 121.36 mm | |
15 | 0.650 7 | 0.917 5 | 12.400 7 |
14 | 0.629 8 | 0.888 0 | 12.002 2 |
13 | 0.607 9 | 0.857 3 | 11.586 7 |
12 | 0.585 2 | 0.825 2 | 11.152 3 |
11 | 0.561 2 | 0.791 4 | 10.696 7 |
10 | 0.536 1 | 0.756 0 | 10.217 1 |
9 | 0.509 5 | 0.718 4 | 9.709 9 |
8 | 0.481 2 | 0.678 5 | 9.170 7 |
7 | 0.450 9 | 0.635 8 | 8.593 4 |
6 | 0.418 2 | 0.589 7 | 7.969 7 |
5 | 0.382 4 | 0.539 2 | 7.287 8 |
表5
常用排采方式适应性对比"
工区排采条件 | 排采方式 | 适应性分析 | 结论 | |
---|---|---|---|---|
井深:3 446~4 190 m; 井斜角大:80°~86.5°; 井况复杂:排采后期返排泥质、粉砂、固相颗粒等; 排量范围大:压后返排和后续排采液量范围5~200 m3/d | 有杆抽油泵 | 1.需增加动力设备及二抽设备投资; 2.排液效率受供液能力、气液比、泵深等影响较大,排液效率低 | 不适宜 | |
超声旋流雾化排液 | 定向井使用受限 | 不适宜 | ||
水力射流泵 | 1.需要建立高压动力站与管线,投资成本高; 2.举升效率低,且气液比太大时不适宜 | 不适宜 | ||
优选管柱 | 1.根据不同开采阶段要求更换管柱,能够稳定携液; 2.动管柱更换需进行压井作业,对气层伤害比较大 | 适宜 | ||
气 举 排 液 | 气举阀气举 | 1.完井时直接采用气举管柱,工艺简单; 2.管理费用低,操作简单,成本低; 3.受地理环境限制,建设地面增压站不适宜 | 适宜(可采用邻井气气举或气井自产气增压气举) | |
柱塞气举 | 1.适宜范围小,井况要求高; 2.斜井和定向井受限 | 不适宜 | ||
泡排 | 1.需持续分析产出水,优选合适的泡排剂; 2.增加了人工投入 | 适宜 | ||
电潜泵 | 1.需增加电力设备、潜油电泵、电泵电缆等的投资; 2.排液效率受供液能力、气液比、泵深等的影响较大 | 适宜 |
表6
优选排采工艺和现有排采工艺技术、经济适应性对比"
阶段 | 特征 | 排采工艺 | 技术对比 | 经济 | 管理 | 应用状况 |
---|---|---|---|---|---|---|
初期 | 液量高 气量高 | 电潜泵 | 1.地层出泥沙严重,经常导致过载停机; 2.排液周期长 | 中 | 一般 | 应用 |
电潜泵+气举 | 1.可实现大液量的高效、快速返排,降低排液周期; 2.适合大型水力压裂气井 | 高 | 复杂 | 无 | ||
外输气气举 | 1.工艺简单; 2.适用于有管网、外输压力8 MPa的气井; 3.既可做投产诱喷、也可做气井日常维护 | 低 | 简单 | 无 | ||
液量低 气量高 | 套管采气 | 1.工艺简单; 2.适用于投产初期、低液量、高压高产气井 | 低 | 简单 | 应用 | |
稳定期 | 液量由高到低、气量稳定 | 连续油管 | 1.带压作业,对储层无污染; 2.管径小,携液气量有限,适用于低压、低产、低液量气井 | 中 | 简单 | 应用 |
电潜泵 | 1.地层出泥沙严重,经常导致过载停机; 2.地层供液不足时经常欠载停机,选取国内最小泵型,仍不能满足排采需求 | 高 | 简单 | 应用 | ||
外输气气举 | 1.工艺简单; 2.适用于有管网、外输压力8 MPa的气井; 3.既可做投产诱喷、也可做低产井日常维护 | 低 | 简单 | 无 | ||
电潜泵+气举 | 通过参数优化,能够适应不同液量排液需求 | 最高 | 复杂 | 无 | ||
自喷期 | 液量低气量 稳定 | 气举诱喷 | 1.需更换成气举管柱; 2.地层能量衰竭时,自喷不连续 | 低 | 简单 | 应用 |
电潜泵+气举 | 机动灵活。有自喷能量时,采用间歇气举诱喷排液;地层能量衰竭时,采用连续气举排液 | 高 | 复杂 | 无 | ||
外输气气举 | 1.工艺简单; 2.适用于有管网、外输压力8 MPa的气井; 3.做产量波动时的日常维护 | 低 | 简单 | 无 | ||
自产气压缩机气举 | 适用于具有一定产气量、低产液量井 | 中 | 简单 | 试验 | ||
递减期 | 液量低 气量低 | 电潜泵+气举 | 可适应于低液量、低气量的连续气举 | 高 | 复杂 | 无 |
自产气压缩机气举 | 适应有一定产气量、低产液量的气井 | 中 | 简单 | 应用 | ||
外输气气举 | 1.适用于有管网、外输压力8 MPa的气井; 2.低产井日常维护 | 最低 | 简单 | 无 | ||
同心管 (小直径管) | 1.在原管柱上加入小直径管,无需作业,降低作业伤害; 2.能够满足低液量、低产量排采需求,延长生产期 | 低 | 简单 | 无 |
[1] | KRAVITS M S, FREAR R M, BORDWELL D. Analysis of plunger lift applications in the Marcellus Shale[C]// paper SPE-147225-MS presented at the SPE Annual Technical Conference and Exhibition, 30 October-2 November 2011, Denver, Colorado, USA. |
[2] | CARPENTER C . Foamer technology optimizes artificial lift in the Alliance Shale Gas Field[J]. Journal of Petroleum Technology, 2013,65(7):98-101. |
[3] | LANE W, CHOKSHI R. Considerations for optimizing artificial lift in unconventionals[C]// paper URTEC-1921823-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, 25-27 August 2014, Denver, Colorado, USA. |
[4] | 蒋泽银, 李伟, 罗鑫 , 等. 长宁页岩气井泡沫排水起泡剂优选及现场应用[J]. 石油与天然气化工, 2018,47(4):73-76. |
JIANG Z Y, LI W, LUO X , et al. Optimization and application of foam-dewatering agents in Changning shale gas wells[J]. Chemical Engineering of Oil and Gas, 2018,47(4):73-76. | |
[5] | 王大江 . 页岩气井连续油管排水采气工艺探讨[J]. 石化技术, 2016,23(11):139. |
WANG D J . Discussion on gas production process of coiled tubing in shale gas well[J]. Petrochemical Industry Technology, 2016,23(11):139. | |
[6] | LEA J F, WINKLER H W . What's new in artificial lift[J]. World Oil, 2011,232(5):51-61. |
[7] | 郑俊德, 张仲宏 . 国外电泵采油技术新进展[J]. 钻采工艺, 2007,30(1):67-71. |
ZHENG J D, ZHANG Z H . New development of electrical submersible pump production technology in abroad[J]. Drilling & Production Technology, 2007,30(1):67-71. | |
[8] | 夏海帮, 袁航, 岑涛 . 彭水区块页岩气生产井排采方式研究与应用[J]. 石油钻探技术, 2014,42(4):21-26. |
XIA H B, YUAN H, CEN T . Study and application of drainage methods for shale gas wells in Pengshui Block[J]. Petroleum Drilling Techniques, 2014,42(4):21-26. | |
[9] | 刘琦, 蒋建勋, 石庆 , 等. 国内外排液采气方法应用效果分析[J]. 天然气勘探与开发, 2006,29(3):51-55. |
LIU Q, JIANG J X, SHI Q . Application analysis of methods of gas recovery by liquid unloading at home and abroad[J]. Natural Gas Exploration and Development, 2006,29(3):51-55. | |
[10] | 张宏录, 程百利, 张龙胜 , 等. 页岩气井同心双管排采新工艺研究[J]. 石油钻探技术, 2013,41(5):36-40. |
ZHANG H L, CHENG B L, ZHANG L S , et al. New process of water drainage for shale gas recovery[J]. Petroleum Drilling Techniques, 2013,41(5):36-40. | |
[11] | 杨桦, 杨川东 . 优选管柱排水采气工艺的理论研究[J]. 西南石油学院学报, 1994,16(4):56-65. |
YANG H, YANG C D . Theoretical study on optimum selection string of water drainage and gas recovery[J]. Journal of Southwest Petroleum University, 1994,16(4):56-65. | |
[12] | 王小彩, 李敏, 胡惠芳 , 等. 优选管柱排液采气工艺技术[J]. 油气田地面工程, 2003,22(6):26. |
WANG X C, LI M, HU H F , et al. Optimization of water drainage and gas recovery string[J]. Oil-Gasfield Surface Engineering, 2003,22(6):26. | |
[13] | AGUILAR M A L, RAMOS H P, INESTROSA A R, et al. Self-sufficient system for continuous gas lift in a very harmful sour gas environment[C]// paper SPE-74414-MS presented at the SPE International Petroleum Conference and Exhibition in Mexico, 10-12 February 2002, Villahermosa, Mexico. |
[14] | 汪海, 鲍志强, 耿新中 , 等. 气井气举阀气举排液采气工艺参数设计研究[J]. 天然气勘探与开发, 2005,28(2):36-38. |
WANG H, BAO Z Q, LUAN Y C , et al. Parameter design of ‘gas recovery by liquid drainage’ technique with gas lift by gas-lift valve for gas wells[J]. Natural Gas Exploration and Development, 2005,28(2):36-38. | |
[15] | 苏月琦, 汪海, 汪召华 , 等. 气举阀气举排液采气工艺参数设计与优选技术研究[J]. 天然气工业, 2006,26(3):104-106. |
SU Y Q, WANG H, WANG Z H , et al. Design and optimization of technological parameters of gas production through GLV gas lift flowing back[J]. Natural Gas Industry, 2006,26(3):104-106. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[3] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[4] | 姚红生,肖翠,陈贞龙,郭涛,李鑫. 延川南深部煤层气高效开发调整对策研究 [J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
[5] | 蒋恕,李醇,陈国辉,郭彤楼,吴聿元,何希鹏,高玉巧,张培先. 中美常压页岩气赋存状态及其对可动性与产量的影响——以彭水和阿巴拉契亚为例 [J]. 油气藏评价与开发, 2022, 12(3): 399-406. |
[6] | 刘成川,王勇飞,毕有益. 中江气田窄河道致密砂岩气藏高效开发技术 [J]. 油气藏评价与开发, 2022, 12(2): 345-355. |
[7] | 湛小红,陈学辉,刘超,何文斌,张志平. 重庆武隆五峰组—龙马溪组一段天生剖面特征研究 [J]. 油气藏评价与开发, 2022, 12(1): 150-159. |
[8] | 王运海,任建华,陈祖华,梅俊伟,胡春锋,王伟,卢比. 常压页岩气田一体化效益开发及智能化评价 [J]. 油气藏评价与开发, 2021, 11(4): 487-496. |
[9] | 胡春锋,梅俊伟,李仕钊,卢比,马军,钱劲. 四川盆地东部南川常压页岩气开发效果地质与工程因素分析 [J]. 油气藏评价与开发, 2021, 11(4): 559-568. |
[10] | 何希鹏,高玉巧,何贵松,张培先,刘明,孙斌,汪凯明,周頔娜,任建华. 渝东南南川页岩气田地质特征及勘探开发关键技术 [J]. 油气藏评价与开发, 2021, 11(3): 305-316. |
[11] | 杨怀成,夏苏疆,高启国,毛国扬. 常压页岩气全电动压裂装备及技术示范应用效果分析 [J]. 油气藏评价与开发, 2021, 11(3): 348-355. |
[12] | 张国荣,王俊方,张龙富,陈士奎. 南川常压页岩气田高效开发关键技术进展 [J]. 油气藏评价与开发, 2021, 11(3): 365-376. |
[13] | 彭勇民,龙胜祥,何希鹏,唐建信,聂海宽,高玉巧,薛冈,凡渝东,刘雨林. 彭水地区常压页岩气储层特征及有利区评价 [J]. 油气藏评价与开发, 2020, 10(5): 12-19. |
[14] | 刘厚裕. 页岩气低密度三维地震勘探方法适应性评估分析 [J]. 油气藏评价与开发, 2020, 10(5): 34-41. |
[15] | 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用 [J]. 油气藏评价与开发, 2020, 10(5): 70-76. |
|