油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (1): 9-16.doi: 10.13809/j.cnki.cn32-1825/te.2020.01.002
袁玉松1,方志雄2,何希鹏2,李双建1,彭勇民1,龙胜祥1
收稿日期:
2019-07-31
出版日期:
2020-02-26
发布日期:
2020-02-04
作者简介:
袁玉松(1967 —),男,博士,研究员,主要从事沉积盆地构造热演化和盖层封闭性研究。通信地址:北京市海淀区北四环中路奥运大厦803,邮政编码:100197。E-mail:yuanys.syky@sinopec.com
基金资助:
YUAN Yusong1,FANG Zhixiong2,HE Xipeng2,LI Shuangjian1,PENG Yongmin1,LONG shengxiang1
Received:
2019-07-31
Online:
2020-02-26
Published:
2020-02-04
摘要:
彭水及邻区龙马溪组页岩气藏在地质历史时期存在过超压现象,但现今为常压,发生了由超压向常压的转变。通过抬升过程中地层压力演化模拟,揭示龙马溪组泥页岩在抬升过程中发生了超压破裂,产生裂缝,导致页岩气散失和超压释放。依据泥页岩覆压渗透率测试分析数据,认为当龙马溪组泥页岩裂缝面上所受的正应力大于15 MPa,即埋深大于1 000 m时裂缝将发生闭合。但裂缝闭合程度受泥页岩超固结比(OCR)影响,处于脆性带之下的泥页岩,OCR相对小,裂缝闭合程度相对高,超压可能未完全释放,现今仍然维持一定程度的超压;处于脆性带之上的泥页岩,OCR越大,裂缝闭合程度越差,对页岩气保存不利,容易导致超压完全释放,变为常压。泥页岩的OCR与地层流体压力系数之间具有显著的相关性,OCR比越大,越趋于常压。
中图分类号:
袁玉松,方志雄,何希鹏,李双建,彭勇民,龙胜祥. 彭水及邻区龙马溪组页岩气常压形成机制[J]. 油气藏评价与开发, 2020, 10(1): 9-16.
YUAN Yusong,FANG Zhixiong,HE Xipeng,LI Shuangjian,PENG Yongmin,LONG shengxiang. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J]. Reservoir Evaluation and Development, 2020, 10(1): 9-16.
表1
彭水及邻区代表性探井龙马溪组泥页岩OCR值及地层压力系数"
井名 | 现今 埋深/m | 最大古埋深/m | OCR | 志留系 压力系数实测值 | 志留系 压力系数预测值 | 误差 |
---|---|---|---|---|---|---|
PY1 | 2 153 | 6 243 | 2.70 | 0.96 | 1.05 | 0.09 |
HY1 | 2 162 | 6 461 | 3.00 | 1.01 | 0.99 | 0.02 |
PY3 | 3 021 | 6 216 | 2.10 | 1.05 | 1.21 | 0.16 |
DY1 | 2 050 | 5 045 | 2.50 | 1.15 | 1.10 | 0.05 |
LY1 | 2 832 | 5 831 | 2.10 | 1.20 | 1.21 | 0.01 |
SY1 | 3 467 | 5 462 | 1.57 | 1.30 | 1.43 | 0.13 |
NY1 | 4 405 | 5 700 | 1.29 | 1.40 | 1.59 | 0.19 |
JY1 | 2 409 | 5 708 | 2.20 | 1.45 | 1.18 | 0.27 |
JS1 | 4 985 | 6 904 | 1.40 | 1.67 | 1.52 | 0.15 |
DY2 | 4 359 | 6 354 | 1.27 | 1.78 | 1.61 | 0.17 |
表4
泥页岩人造裂缝渗透率随围压变化数据"
泥-1 | 泥-2 | 泥-3 | 泥-4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | 围压/MPa | 渗透率/10-3 μm2 | |||
1.00 | 19.503 000 | 1.0 | 33.433 00 | 1.0 | 18.176 000 | 1.0 | 23.588 000 | |||
3.20 | 9.889 109 | 9.05 | 5.639 825 | 5.4 | 7.249 812 | 10.1 | 12.915 430 | |||
5.15 | 4.742 773 | 11.5 | 3.237 930 | 8.35 | 2.961 592 | 12.2 | 9.766 560 | |||
7.15 | 3.837 527 | 14.0 | 1.447 781 | 11.2 | 1.574 693 | 15.2 | 6.350 846 | |||
10.25 | 2.090 685 | 19.9 | 0.443 591 | 15.2 | 0.785 671 | 20.6 | 2.338 490 | |||
15.40 | 0.832 936 | 25.2 | 0.220 236 | 20.1 | 0.395 021 | 25.5 | 1.168 620 | |||
24.98 | 0.248 925 | 29.9 | 0.130 036 | 25.2 | 0.238 413 | 30.4 | 0.646 946 | |||
34.70 | 0.093 078 | 39.4 | 0.056 493 | 29.9 | 0.153 105 | 38.9 | 0.263 671 | |||
44.00 | 0.042 680 | 49.8 | 0.026 599 | 39.4 | 0.068 022 | 50.0 | 0.108 952 | |||
59.50 | 0.016 512 | 58.0 | 0.016 027 | 50.2 | 0.032 018 | 60.0 | 0.056 485 | |||
59.6 | 0.021 513 |
表5
彭水地区志留系龙马溪组泥页岩三轴压缩试验数据"
地层 层位 | 样品编号 | 轴向应力/MPa | 围压/MPa | 温度/℃ | 峰值强度/MPa | 弹性模量/GPa | 泊松比 | 内聚力C/MPa | 内摩擦角Φ/(°) |
---|---|---|---|---|---|---|---|---|---|
龙马 溪组 | 1142-3 | 40.25 | 1.92 | 17 | 38.33 | 3.54 | 0.11 | 11.0 | 30.0 |
1142-38 | 61.01 | 7.65 | 25 | 53.36 | 3.48 | 0.12 | |||
1142-15 | 93.32 | 15.49 | 35 | 77.83 | 5.03 | 0.20 | |||
1142-21 | 126.35 | 31.06 | 55 | 95.29 | 6.09 | 0.22 | |||
1142-46 | 147.08 | 48.16 | 75 | 98.92 | 5.33 | 0.29 |
[1] | 何希鹏, 高玉巧, 唐显春 , 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017,28(4):654-664. |
HE X P, GAO Y Q, TANG X C , et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017,28(4):654-664. | |
[2] | 董大忠, 王玉满, 李新景 , 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016,36(1):19-32. |
DONG D Z, WANG Y M, LI X J , et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016,36(1):19-32. | |
[3] | 聂海宽, 汪虎, 何治亮 , 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019,40(2):131-143. |
NIE H K, WANG H, HE Z L , et al. Famation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng-Longmaxi Famation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019,40(2):131-143. | |
[4] | 李双建, 袁玉松, 孙炜 , 等. 四川盆地志留系页岩气超压形成与破坏机理及主控因素[J]. 天然气地球科学, 2016,27(5):924-931. |
LI S J, YUAN Y S, SUN W , et al. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin[J]. Natural Gas Geoscience, 2016,27(5):924-931. | |
[5] | 方志雄, 何希鹏 . 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016,37(6):819-827. |
FANG Z X, HE X P . Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline, Southeast Chongqing, China[J]. Oil & Gas Geology, 2016,37(6):819-827. | |
[6] | NYGARD R, GUTIERREZ M, BRATLI R K , et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006,23(2):201-212. |
[7] | YUAN Y S, JIN Z J, ZHOU Y , et al. Burial depth interval of the shale brittle-ductile transition zone and its implications in shale gas exploration and production[J]. Petroleum Science, 2017,14(5):637-647. |
[8] | 李士祥, 施泽进, 刘显阳 , 等. 鄂尔多斯盆地中生界异常低压成因定量分析[J]. 石油勘探与开发, 2013,40(5):528-533. |
LI S X, SHI Z J, LIU X Y , et al. Quantitative analysis of the Mesozoic abnormal low pressure in Ordos Basin[J]. Petroleum Exploration and Development, 2013,40(5):528-533. | |
[9] | SWARBRICK R E, OSBORNE M J . Mechanisms that generate abnormal pressures: An overview[J]. AAPG Memoir, 1998,70:13-34. |
[10] | 王瑀辉, 袁玉松 . 含烃盐水包裹体PVTsim模拟的一种简化方法及应用[J]. 石油地质与工程, 2018,32(5):40-43. |
WANG Y H, YUAN Y S . Hydrocarbon brine inclusions PVTsim simulation: A simplified method and application[J]. Petroleum Geology and Engineering, 2018,32(5):40-43. | |
[11] | 米敬奎, 杨孟达, 刘新华 . 利用PVTsim计算鄂尔多斯盆地上古生界砂岩储层中包裹体的捕获压力[J]. 湘潭矿业学院学报, 2002,17(3):22-26. |
MI J K, YANG M D, LIU X H . Calculation to trapping pressure of inclusions occurring in upperpaleozoic sandstone reservoir from the Ordos basin using PVTsim method[J]. Journal of Xiangtan Mining Institute, 2002,17(3):22-26. | |
[12] | RICKMAN R, MULLEN M J, PETRE J E. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]// paper SPE-115258-MS presented at the SPE Annual Technical Conference and Exhibition, 21-24 September 2008, Denver, Colorado, USA. |
[13] | LABANI M M, REZAEE R . The importance of geochemical parameters and shale composition on rock mechanical properties of gas shale reservoirs: a case study from the Kockatea Shale and Carynginia Formation from the Perth Basin, Western Australia[J]. Rock Mechanics and Rock Engineering, 2015,48(3):1249-1257. |
[14] | WANG F P, GALE J F . Screening criteria for shale-gas systems[J]. Gulf Coast Assoc Geol Soc Trans, 2009,59:779-793. |
[15] | 邹才能, 董大忠, 王社教 , 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653. |
ZOU C N, DONG D Z, WANG S J , et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010,37(6):641-653. | |
[16] | 聂海宽, 包书景, 高波 , 等. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘, 2012,19(3):280-294. |
NIE H K, BAO S J, GAO BO , et al. A study of shale gas preservation condition for the Lower Paleozoic in Sichuan Basin and its pheriphery[J]. Earth Science Frontiers, 2012,19(3):280-294. | |
[17] | 李双建, 周雁, 孙冬胜 . 评价盖层有效性的岩石力学实验研究[J]. 石油实验地质, 2013,35(5):574-578. |
LI S J, ZHOU Y, SUN D S . Rock mechanic experiment study of evaluation on cap rock effectiveness[J]. Petroleum Geology & Experiment, 2013,35(5):574-578. | |
[18] | BABANOURI N, NASAB S K, BAGHBANAN A , et al. Overconsolidation effect on shear behavior of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2011,48(8):1283-1291. |
[19] | NYGÅRD R, GUTIERREZ M, BRATLI R K , et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks[J]. Marine and Petroleum Geology, 2006,23(2):201-212. |
[20] | MARK R P T, RICHARD R H, RICHARD E S , et al. Origin of overpressure and pore- pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009,93(1):51-74. |
[21] | 朱贺, 汪佳, 施坤 , 等. 泥岩裂缝性储层应力敏感性实验研究[J]. 科学技术与工程, 2011,11(35):8862-8864. |
ZHU H, WANG J, SHI K , et al. Experimental study on pressures sensibility of fractured shale reservoir[J]. Science Technology and Engineering, 2011,11(35):8862-8864. | |
[22] | 解习农, 刘晓峰, 胡祥云 , 等. 超压盆地中泥岩的流体压裂与幕式排烃作用[J]. 地质科技情报, 1998,17(4):59-64. |
JIE X N, LIU X F, HU X Y , et al. Hydrofracturing and associated episodic hydrocarbon expulsion of mudstones in overpressured basin[J]. Geological Science and Technology Information, 1998,17(4):59-64 | |
[23] | 郝芳, 董伟良 . 沉积盆地超压系统演化、流体流动与成藏机理[J]. 地球科学进展, 2001,16(1):79-85. |
HAO F, DONG W L . Evolution of, fluid flow and petroleum accumulation in overpressured systems in sedimentary basins[J]. Advance In Earth Sciences, 2001,16(1):79-85 | |
[24] | HARWOOD R J . Oil and Gas Generation by Laboratory Pyrolysis of Kerogen[J]. AAPG, 1977,61(12):2082-2102. |
[25] | 席斌斌, 腾格尔, 俞凌杰 , 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016,38(4):473-479. |
XI B B, TENG G E, YU L J , et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(4):473-479. | |
[26] | 高键, 何生, 易积正 . 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J]. 石油与天然气地质, 2015,36(3):472-480. |
GAO J, HE S, YI J Z . Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015,36(3):472-480. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[7] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[8] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[9] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[10] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[11] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[12] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[13] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[14] | 赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例 [J]. 油气藏评价与开发, 2023, 13(1): 52-63. |
[15] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
|