油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (3): 15-22.doi: 10.13809/j.cnki.cn32-1825/te.2020.03.002
胡永乐,郝明强
收稿日期:
2020-03-20
出版日期:
2020-06-26
发布日期:
2020-07-03
作者简介:
胡永乐(I960—),男,教授级高级工程师,博士生导师,主要从事油气田开发工程方面的研究和科研管理工作。通讯地址:北京市海淀区学院路20号中国石油勘探开发研究院院办,邮政编码:100083。E-mail:hyl@petrochina.com.cn
基金资助:
HU Yongle,HAO Mingqiang
Received:
2020-03-20
Online:
2020-06-26
Published:
2020-07-03
摘要:
世界范围内CCUS(CO2捕集、利用与埋存)产业发展迅速,并且逐渐从单环节项目向全产业项目发展;捕集对象从电厂和天然气处理,扩展到钢铁、水泥、煤油、化肥及制氢等行业。目前,产业驱动方式主要有5种:政府及公共基金、国家激励政策、税收、强制性减排政策及碳交易等。我国规模集中排放CO2的企业主要以电厂、水泥、钢铁和煤化工为主,其排放量约占总量的92 %。按浓度划分,以低浓度的电厂、水泥、钢铁及炼化行业为主,高浓度的煤化工、合成氨、电石及中浓度的聚乙烯行业排放源相对较少。CO2来源成本由捕集、压缩及运输3部分构成,这3项成本均受捕集规模的影响,而捕集成本还与排放源浓度密切相关,高浓度排放源以压缩成本为主,低浓度排放源以捕集成本为主。多数油田对CO2成本的承受力低于其来源成本,这之间的差距需要寻求技术、政策及市场等方面的途径来填补。
中图分类号:
胡永乐,郝明强. CCUS产业发展特点及成本界限研究[J]. 油气藏评价与开发, 2020, 10(3): 15-22.
HU Yongle,HAO Mingqiang. Development characteristics and cost analysis of CCUS in China[J]. Reservoir Evaluation and Development, 2020, 10(3): 15-22.
[1] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020,27(1):20-28. |
QIN J S, LI Y L, WU D B, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):20-28. | |
[2] | 杨勇. 胜利油田特低渗透油藏CO2驱技术研究与实践[J]. 油气地质与采收率, 2020,27(1):11-19. |
YANG Y. Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):11-19. | |
[3] | 严巡, 刘让龙, 王长权, 等. 盐间油藏原油和CO2最小混相压力研究[J]. 非常规油气, 2019,6(5):54-56. |
YAN X, LIU R L, WANG C Q, et al. Investigation of the minimum miscibility of crude oil and CO2 in salt reservoir[J]. Unconventional Oil & Gas, 2019,6(5):54-56. | |
[4] | 张本艳, 周立娟, 何学文, 等. 鄂尔多斯盆地渭北油田长3储层注CO2室内研究[J]. 石油地质与工程, 2018,32(3):87-90. |
ZHANG B Y, ZHOU L J, HE X W, et al. A laboratory study on CO2 injection of Chang 3 reservoir of Weibei oilfield in Ordos basin[J]. Petroleum Geology & Engineering, 2018,32(3):87-90. | |
[5] | 丁妍. 濮城油田低渗高压注水油藏转CO2驱技术及应用[J]. 石油地质与工程, 2019,33(6):73-76. |
DING Y. Technology and application of CO2 flooding in low-permeability and high-pressure water injection reservoirs in Pucheng oilfield[J]. Petroleum Geology & Engineering, 2019,33(6):73-76. | |
[6] |
SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2 application to carbon capture and storage[J]. Energy Conversion and Management, 2004,45(15):2343-2353.
doi: 10.1016/j.enconman.2003.11.022 |
[7] | 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020,27(1):1-10. |
LI Y. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):1-10. | |
[8] | 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019,6(1):107-114. |
JIA K F, JI D C, GAO J D, et al. The existing state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019,6(1):107-114. | |
[9] |
AYDIN G, KARAKURT I, AYDINER K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety[J]. Energy Policy, 2010,38(9):5072-5080.
doi: 10.1016/j.enpol.2010.04.035 |
[10] |
BENZ E, TRUCK S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009,31(1):4-15.
doi: 10.1016/j.eneco.2008.07.003 |
[11] |
HEROLD J, MENDELEVITCH R. Modeling a carbon capture, transport, and storage infrastructure for Europe[J]. Environmental Modeling and Assessment, 2014,19(6):515-531.
doi: 10.1007/s10666-014-9409-3 |
[12] |
ANANTHARAMAN R, ROUSSANALY S, WESTMAN S F, et al. Selection of optimal CO2 capture plant capacity for better investment decisions[J]. Energy Procedia, 2013,37:7039-7045.
doi: 10.1016/j.egypro.2013.06.640 |
[13] |
HAN J H, LEE I B. Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission[J]. Applied Energy, 2011,88(12):5056-5068.
doi: 10.1016/j.apenergy.2011.07.010 |
[14] | HAN J H, LEE I B. Development of a scalable and comprehensive infrastructure model for carbon dioxide utilization and disposal[J]. Industrial & Engineering Chemistry Research, 2011,50(10):6297-6315. |
[15] |
KEMP A G, KASIM A S. A futuristic least-cost optimization model of CO2 transportation and storage in the UK/UK continental shelf[J]. Energy Policy, 2010,38(7):3652-3667.
doi: 10.1016/j.enpol.2010.02.042 |
[16] |
KLOKK Ø, SCHREINER P F, PAGÈS BERNAUS A, et al. Optimizing a CO2 value chain for the Norwegian continental shelf[J]. Energy Policy, 2010,38(11):6604-6614.
doi: 10.1016/j.enpol.2010.06.031 |
[17] | 牛保伦. 边底水气藏注二氧化碳泡沫控水技术研究[J]. 特种油气藏, 2018,25(3):126-129. |
NIU B L. Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J]. Special Oil & Gas Reservoirs, 2018,25(3):126-129. | |
[18] |
MIDDLETON R S, BIELICKI J M. A scalable infrastructure model for carbon capture and storage: Sim CCS[J]. Energy Policy, 2009,37(3):1052-1060.
doi: 10.1016/j.enpol.2008.09.049 |
[19] |
MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008,2(2):219-229.
doi: 10.1016/S1750-5836(07)00119-3 |
[20] |
DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007,32(7):1163-1176.
doi: 10.1016/j.energy.2006.07.039 |
[21] |
RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil fuel power plants with CO2 capture and storage[J]. Energy Policy, 2007,35(9):4444-4454.
doi: 10.1016/j.enpol.2007.03.009 |
[22] |
RUBIN E S, YEH S, ANTES M, et al. Use of experience curves to estimate the future cost of power plants with CO2 capture[J]. International Journal of Greenhouse Gas Control, 2007,1(2):188-197.
doi: 10.1016/S1750-5836(07)00016-3 |
[23] | 邓瑞健, 田巍, 李中超, 等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019,26(3):133-137. |
DENG R J, TIAN W, LI Z C, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019,26(3):133-137. | |
[24] | 何应付, 赵淑霞, 计秉玉, 等. 砂岩油藏CO2驱提高采收率油藏筛选与潜力评价[J]. 油气地质与采收率, 2020,27(1):140-145. |
HE Y F, ZHAO S X, JI B Y, et al. Screening method and potential evaluation for EOR by CO2 flooding in sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):140-145. | |
[25] | 鞠斌山, 于金彪, 吕广忠, 等. 低渗透油藏CO2驱油数值模拟方法与应用[J]. 油气地质与采收率, 2020,27(1):126-133. |
JU B S, YU J B, LYU G Z, et al. Numerical simulation method and application of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):126-133. | |
[26] | 王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018,32(5):63-65. |
WANG H M. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology and Engineering, 2018,32(5):63-65. |
[1] | 陈元千,王鑫,刘洋,石晓敏. 对FETKOVICH(费特科维奇)典型曲线的质疑与评论 [J]. 油气藏评价与开发, 2024, 14(2): 159-166. |
[2] | 束宁凯,刘丽杰,姚秀田,黄迎松,赖枫鹏,崔文富. 极端耗水层带形成机制及流场调控增效模式——以陆相砂岩特高含水后期整装油田为例 [J]. 油气藏评价与开发, 2024, 14(2): 237-246. |
[3] | 罗宪波,常会江,雷源,翟上奇,孙广义. 注水井优化配注方法应用现状及发展方向 [J]. 油气藏评价与开发, 2023, 13(2): 223-232. |
[4] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
[5] | 廖松林,夏阳,崔轶男,刘方志,曹胜江,汤勇. 超低渗油藏水平井注CO2多周期吞吐原油性质变化规律研究 [J]. 油气藏评价与开发, 2022, 12(5): 784-793. |
[6] | 潘毅,赵秋霞,孙雷,刘江,汪涛,郭德明. CO2驱最小混相压力预测模型研究 [J]. 油气藏评价与开发, 2022, 12(5): 748-753. |
[7] | 计秉玉,何应付. 中国石化低渗透油藏CO2驱油实践与认识 [J]. 油气藏评价与开发, 2021, 11(6): 805-811. |
[8] | 唐良睿,贾英,严谨,李广辉,汪勇,何佑伟,秦佳正,汤勇. 枯竭气藏CO2埋存潜力计算方法研究 [J]. 油气藏评价与开发, 2021, 11(6): 858-863. |
[9] | 吴公益,赵梓平,吴波. 苏北不同类型油藏CO2驱开发模式及经济效益评价 [J]. 油气藏评价与开发, 2021, 11(6): 864-870. |
[10] | 杨兆中,李扬,饶政,何帆,李小刚,马薛丽. 注入水水质对SN-1井区油藏采收率影响研究 [J]. 油气藏评价与开发, 2020, 10(6): 103-109. |
[11] | 刘学利,郑小杰,谭涛,窦莲,谢爽. 塔河强底水砂岩油藏CO2驱机理实验研究 [J]. 油气藏评价与开发, 2020, 10(6): 115-120. |
[12] | 刘博,张荣达,张伊琳,卢云霞,汪婷. 双河油田高耗水条带影响因素及治理对策可行性研究 [J]. 油气藏评价与开发, 2020, 10(6): 96-102. |
[13] | 王志远,张烈辉,谭龙,张朝良,唐洪明. 砾岩储集层聚合物驱油机理与控制因素实验研究 [J]. 油气藏评价与开发, 2020, 10(3): 109-114. |
[14] | 李士伦,汤勇,侯承希. 注CO2提高采收率技术现状及发展趋势 [J]. 油气藏评价与开发, 2019, 9(3): 1-8. |
[15] | 梅海燕,何浪,张茂林,胡欣芮,毛恒博. 页岩油注气提高采收率现状及可行性分析 [J]. 油气藏评价与开发, 2018, 8(6): 77-82. |
|