[1] |
秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020,27(1):20-28.
|
|
QIN J S, LI Y L, WU D B, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):20-28.
|
[2] |
杨勇. 胜利油田特低渗透油藏CO2驱技术研究与实践[J]. 油气地质与采收率, 2020,27(1):11-19.
|
|
YANG Y. Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):11-19.
|
[3] |
严巡, 刘让龙, 王长权, 等. 盐间油藏原油和CO2最小混相压力研究[J]. 非常规油气, 2019,6(5):54-56.
|
|
YAN X, LIU R L, WANG C Q, et al. Investigation of the minimum miscibility of crude oil and CO2 in salt reservoir[J]. Unconventional Oil & Gas, 2019,6(5):54-56.
|
[4] |
张本艳, 周立娟, 何学文, 等. 鄂尔多斯盆地渭北油田长3储层注CO2室内研究[J]. 石油地质与工程, 2018,32(3):87-90.
|
|
ZHANG B Y, ZHOU L J, HE X W, et al. A laboratory study on CO2 injection of Chang 3 reservoir of Weibei oilfield in Ordos basin[J]. Petroleum Geology & Engineering, 2018,32(3):87-90.
|
[5] |
丁妍. 濮城油田低渗高压注水油藏转CO2驱技术及应用[J]. 石油地质与工程, 2019,33(6):73-76.
|
|
DING Y. Technology and application of CO2 flooding in low-permeability and high-pressure water injection reservoirs in Pucheng oilfield[J]. Petroleum Geology & Engineering, 2019,33(6):73-76.
|
[6] |
SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2 application to carbon capture and storage[J]. Energy Conversion and Management, 2004,45(15):2343-2353.
doi: 10.1016/j.enconman.2003.11.022
|
[7] |
李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020,27(1):1-10.
|
|
LI Y. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):1-10.
|
[8] |
贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019,6(1):107-114.
|
|
JIA K F, JI D C, GAO J D, et al. The existing state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019,6(1):107-114.
|
[9] |
AYDIN G, KARAKURT I, AYDINER K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety[J]. Energy Policy, 2010,38(9):5072-5080.
doi: 10.1016/j.enpol.2010.04.035
|
[10] |
BENZ E, TRUCK S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009,31(1):4-15.
doi: 10.1016/j.eneco.2008.07.003
|
[11] |
HEROLD J, MENDELEVITCH R. Modeling a carbon capture, transport, and storage infrastructure for Europe[J]. Environmental Modeling and Assessment, 2014,19(6):515-531.
doi: 10.1007/s10666-014-9409-3
|
[12] |
ANANTHARAMAN R, ROUSSANALY S, WESTMAN S F, et al. Selection of optimal CO2 capture plant capacity for better investment decisions[J]. Energy Procedia, 2013,37:7039-7045.
doi: 10.1016/j.egypro.2013.06.640
|
[13] |
HAN J H, LEE I B. Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission[J]. Applied Energy, 2011,88(12):5056-5068.
doi: 10.1016/j.apenergy.2011.07.010
|
[14] |
HAN J H, LEE I B. Development of a scalable and comprehensive infrastructure model for carbon dioxide utilization and disposal[J]. Industrial & Engineering Chemistry Research, 2011,50(10):6297-6315.
|
[15] |
KEMP A G, KASIM A S. A futuristic least-cost optimization model of CO2 transportation and storage in the UK/UK continental shelf[J]. Energy Policy, 2010,38(7):3652-3667.
doi: 10.1016/j.enpol.2010.02.042
|
[16] |
KLOKK Ø, SCHREINER P F, PAGÈS BERNAUS A, et al. Optimizing a CO2 value chain for the Norwegian continental shelf[J]. Energy Policy, 2010,38(11):6604-6614.
doi: 10.1016/j.enpol.2010.06.031
|
[17] |
牛保伦. 边底水气藏注二氧化碳泡沫控水技术研究[J]. 特种油气藏, 2018,25(3):126-129.
|
|
NIU B L. Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J]. Special Oil & Gas Reservoirs, 2018,25(3):126-129.
|
[18] |
MIDDLETON R S, BIELICKI J M. A scalable infrastructure model for carbon capture and storage: Sim CCS[J]. Energy Policy, 2009,37(3):1052-1060.
doi: 10.1016/j.enpol.2008.09.049
|
[19] |
MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008,2(2):219-229.
doi: 10.1016/S1750-5836(07)00119-3
|
[20] |
DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007,32(7):1163-1176.
doi: 10.1016/j.energy.2006.07.039
|
[21] |
RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil fuel power plants with CO2 capture and storage[J]. Energy Policy, 2007,35(9):4444-4454.
doi: 10.1016/j.enpol.2007.03.009
|
[22] |
RUBIN E S, YEH S, ANTES M, et al. Use of experience curves to estimate the future cost of power plants with CO2 capture[J]. International Journal of Greenhouse Gas Control, 2007,1(2):188-197.
doi: 10.1016/S1750-5836(07)00016-3
|
[23] |
邓瑞健, 田巍, 李中超, 等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019,26(3):133-137.
|
|
DENG R J, TIAN W, LI Z C, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019,26(3):133-137.
|
[24] |
何应付, 赵淑霞, 计秉玉, 等. 砂岩油藏CO2驱提高采收率油藏筛选与潜力评价[J]. 油气地质与采收率, 2020,27(1):140-145.
|
|
HE Y F, ZHAO S X, JI B Y, et al. Screening method and potential evaluation for EOR by CO2 flooding in sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):140-145.
|
[25] |
鞠斌山, 于金彪, 吕广忠, 等. 低渗透油藏CO2驱油数值模拟方法与应用[J]. 油气地质与采收率, 2020,27(1):126-133.
|
|
JU B S, YU J B, LYU G Z, et al. Numerical simulation method and application of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):126-133.
|
[26] |
王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018,32(5):63-65.
|
|
WANG H M. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology and Engineering, 2018,32(5):63-65.
|