油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (3): 33-38.doi: 10.13809/j.cnki.cn32-1825/te.2020.03.005
刘双星1,2,彭勃1,刘琦1,李兴春2,薛明2
收稿日期:
2020-02-07
出版日期:
2020-06-26
发布日期:
2020-07-03
作者简介:
刘双星(1990—),男,博士,研究员,从事温室气体控制、泡沫驱、天然气水合物清洁开发等研究。通讯地址:北京市昌平区黄河北街1号院中国石油安全环保院,邮政编码:102206。E-mail:shuangxing_liu@outlook.com
LIU Shuangxing1,2,PENG Bo1,LIU Qi1,LI Xingchun2,XUE Ming2
Received:
2020-02-07
Online:
2020-06-26
Published:
2020-07-03
摘要:
CO2由于其独特的物理性质和其与原油之间的理化反应,被广泛用作驱替剂应用于原油开采过程中。但纯气体驱油易发生气窜现象,将CO2用于泡沫驱过程,既能发挥CO2气体本身的驱油作用,又能够实现流度控制,减少气窜现象发生的可能性。对粒径不同、化学组成相同的CO2泡沫体系的稳定性、粒径变化、渗流特征等进行了实验研究,得到了粒径对泡沫性能影响的变化规律,并对影响方式进行了分析与讨论。结果显示,气泡粒径越小,泡沫体系的稳定性越好、封堵能力越强,且粒径随时间变化越缓慢。通过改变制备工艺,减小泡沫体系的粒径,有利于驱油用泡沫体系稳定性和原油驱替能力的提升。
中图分类号:
刘双星,彭勃,刘琦,李兴春,薛明. 驱油用CO2泡沫体系粒径对其性能影响研究[J]. 油气藏评价与开发, 2020, 10(3): 33-38.
LIU Shuangxing,PENG Bo,LIU Qi,LI Xingchun,XUE Ming. Study on impact of particle size of CO2 foam system for flooding on its performance[J]. Reservoir Evaluation and Development, 2020, 10(3): 33-38.
[1] | 严巡, 刘让龙, 王长权, 等. 盐间油藏原油和CO2最小混相压力研究[J]. 非常规油气, 2019,6(5):54-56. |
YAN X, LIU R L, WANG C Q, et al. Investgation of the mininum miscibility of crude oil and CO2 in salt reservoir[J]. Unconventional Oil & Gas, 2019,6(5):54-56. | |
[2] | 史胜龙, 王业飞, 周代余, 等. 微泡沫体系直径影响因素及微观稳定性[J]. 东北石油大学学报, 2016,40(1):103-110. |
SHI S L, WANG Y F, ZHOU D Y, et al. Bubble size influence factors and microscopic stability of microfoam system[J]. Journal of Northeast Petroleum University, 2016,40(1):103-110. | |
[3] | 王琛, 李天太, 高辉, 等. CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理[J]. 油气地质与采收率, 2018,25(3):107-111. |
WANG C, LI T T, GAO H, et al. Study on influencing mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018,25(3):107-111. | |
[4] | 王福顺, 牟珍宝, 刘鹏程, 等. 超稠油油藏CO2辅助开采作用机理实验与数值模拟研究[J]. 油气地质与采收率, 2017,24(6):86-91. |
WANG F S, MOU Z B, LIU P C, et al. Experiment and numerical simulation on mechanism of CO2 assisted mining in super heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):86-91. | |
[5] |
LI C X, WANG W C, WANG Z H. A surface tension model for liquid mixtures based on the Wilson equation[J]. Fluid Phase Equilibria, 2000,175(1-2):185-196.
doi: 10.1016/S0378-3812(00)00447-7 |
[6] | 孙琳, 赵凡琪, 张芸, 等. 高温高盐底水油藏氮气泡沫压锥实验研究[J]. 油气地质与采收率, 2017,24(6):97-102. |
SUN L, ZHAO F Q, ZHANG Y, et al. An experimental study of coning control with nitrogen foam in high-temperature and high-salinity bottom water reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):97-102. | |
[7] | 普劳斯尼茨. 流体相平衡的分子热力学[M]. 北京: 化学工业出版社, 2006. |
PRAUSNITZ J M. Molecular thermodynamics of fluid-phase equilibria[M]. Beijing: Chemical Industry Press, 2006. | |
[8] | 方洪波, 宗华, 李维峰, 等. 热力学不稳定体系的稳定性问题探讨[J]. 油田建设设计, 2001,50(1):4-8. |
FANG H B, ZONG H, LI W F, et al. Discussion of the Stability of thermodynamically unstable systems[J]. Journal of Oilfield Construction & Design, 2001,50(1):4-8. | |
[9] | 赵燕, 吴光焕, 孙业恒. 泡沫辅助蒸汽驱矿场试验及效果[J]. 油气地质与采收率, 2017,24(5):106-110. |
ZHAO Y, WU G H, SUN Y H. Field test and effect analysis of foam-assisted steam flooding[J]. Petroleum Geology and Recovery Efficiency, 2017,24(5):106-110. | |
[10] | 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002. |
GUO L J. Two-phase and multiphase flow mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 2002. | |
[11] |
XUE Z Q, YAMADA T, MATSUOKA T, et al. Carbon dioxide microbubble injection-Enhanced dissolution in geological sequestration[J]. Energy Procedia, 2011,4:4307-4313.
doi: 10.1016/j.egypro.2011.02.381 |
[12] |
KARAKASHEV S I, IVANOVA D S, ANGARSKA Z K, et al. Comparative validation of the analytical models for the Marangoni effect on foam film drainage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,365(1-3):122-136.
doi: 10.1016/j.colsurfa.2010.01.054 |
[13] |
OSEI BONSU K, SHOKRI N, GRASSIA P. Foam stability in the presence and absence of hydrocarbons: From bubble-to bulk-scale[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015,481:514-526.
doi: 10.1016/j.colsurfa.2015.06.023 |
[14] |
TAN S N, FORNASIERO D, SEDEV R, et al. Marangoni effects in aqueous polypropylene glycol foams[J]. Journal of colloid and interface science, 2005,286(2):719-729.
doi: 10.1016/j.jcis.2005.01.028 pmid: 15897090 |
[15] |
TAKAHASHI M, KAWAMURA T, YAMAMOTO Y, et al. Effect of shrinking microbubble on gas hydrate formation[J]. Journal of Physical Chemistry, 2003,107(10):2171-2173.
doi: 10.1021/jp022210z |
[16] | TAKAHASHI M. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface[J]. Journal of Physical Chemistry(B), 2005,109(46):58-64. |
[17] | 曲海莹, 刘琦, 彭勃, 等. 纳米颗粒对CO2泡沫体系稳定性的影响[J]. 油气地质与采收率, 2019,26(5):120-126. |
QU H Y, LIU Q, PENG B, et al. Effect of nanoparticle on stability of CO2 foam flooding system[J]. Petroleum Geology and Recovery Efficiency, 2019,26(5):120-126. | |
[18] |
KATAOKA H, NAGASAKA Y, HASEGAWA H. Electrical potential of microbubble generated by shear flow in pipe with slits[J]. Fluid Dynamics Research, 2008,40(7-8):554-564.
doi: 10.1016/j.fluiddyn.2007.12.007 |
[19] |
KOIDE H, XUE Z Q. Carbon microbubbles sequestration: A novel technology for stable underground emplacement of greenhouse gases into wide variety of saline aquifers, fractured rocks and tight reservoirs[J]. Energy Procedia, 2009,1(1):3655-3662.
doi: 10.1016/j.egypro.2009.02.162 |
[20] | 阮晓博, 杨芳, 顾宁. 微纳气泡制备及其应用于医学超声影像增强与药物载运的发展[J]. 东南大学学报(医学版), 2011,30(1):208-214. |
RUAN X B, YANG F, GU N. Preparation of micro-nano bubbles and their application in medical ultrasound image enhancement and drug transport[J]. Journal OF Southeast University(Medical Science Edition), 2011,30(1):208-214. | |
[21] | 刘观军, 李小瑞, 丁里, 等. 微泡沫酸性清洁压裂液的制备及性能[J]. 精细化工, 2013,30(1):94-98. |
LIU G J, LI X R, DING L, et al. Synjournal of microfoam acid clean fracturing fluid and its properties[J]. Fine Chemicals, 2013,30(1):94-98. | |
[22] |
YAMABE H, NAKAOKA K, XUE Z Q, et al. Simulation study of CO2 micro-bubble generation through porous media[J]. Energy Procedia, 2013,37:4635-4646.
doi: 10.1016/j.egypro.2013.06.372 |
[23] | 姜瑞忠, 张海涛, 张伟, 等. CO2驱三区复合油藏水平井压力动态分析[J]. 油气地质与采收率, 2018,25(6):63-70. |
JIANG R Z, ZHANG H T, ZHANG W, et al. Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):63-70. | |
[24] | 祝浪涛, 廖新维, 陈志明, 等. 应力敏感性低渗透油藏CO2混相驱试井模型[J]. 油气地质与采收率, 2017,24(4):88-93. |
ZHU L T, LIAO X W, CHENG Z M, et al. Well test model of CO2 miscible flooding in the low-permeability reservoirs with stress sensitivity[J]. Petroleum Geology and Recovery Efficiency, 2017,24(4):88-93. | |
[25] | 曾嘉. 二元泡沫体系在含油多孔介质中的渗流特征研究[J]. 长江大学学报(自然科学版), 2015,12(5):24-26. |
ZENG J. Seepage characteristics of binary foam system in porous media containing oil[J]. Journal of Yangtze University(Natural Science Edition), 2015,12(5):24-26. | |
[26] | 史胜龙, 王业飞, 周代余. 微泡沫体系的制备及在调剖、驱油中的应用进展[J]. 油田化学, 2016,34(4):750-755. |
SHI S L, WANG Y F, ZHOU D Y. Preparation methods and research progress of microbubble in flooding and profile control[J]. Oilfield Chemistry, 2016,34(4):750-755. | |
[27] | GROWCOCK F B, KHAN A K, SIMON G A. Application of water-based and oil-based aphrons in drilling fluids[C]// paper SPE-80208-MS presented at the International Symposium on Oilfield Chemistry, 5-7 February 2003, Houston, Texas, USA. |
[28] | 耿向飞, 胡星琪, 吉永忠, 等. 可循环微泡沫钻井液的微泡粒径影响因素研究[J]. 油田化学, 2013,30(4):505-508. |
GENG X F, HU X Q, JI Y Z, et al. Effect factors of microbubble size in recirculated micro-foam drilling fluid[J]. Oilfield Chemistry, 2013,30(4):505-508. |
[1] | 何海燕, 刘先山, 耿少阳, 孙军昌, 孙彦春, 贾倩. 基于渗流-温度双场耦合的油藏型储气库数值模拟 [J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
[2] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[3] | 王典林, 杨琼, 魏兵, 戢炳鑫, 辛军, 孙琳. 甜菜碱型表面活性剂结构对CO2泡沫液膜性质的影响 [J]. 油气藏评价与开发, 2023, 13(3): 313-321. |
[4] | 周海燕,张运来,梁潇,张吉磊,许亚南,刘继柱. 考虑多因素的多层合采产液量劈分模式研究 [J]. 油气藏评价与开发, 2022, 12(6): 945-950. |
[5] | 唐波涛,曾冀,陈伟华,陈一鑫,王涛,刘成,冯逢. 川中秋林地区致密砂岩水平井多簇射孔优化设计方法及应用效果 [J]. 油气藏评价与开发, 2022, 12(2): 337-344. |
[6] | 徐辉,祝仰文,宋敏,庞雪君,孙秀芝. 温敏型聚合物驱油性能研究 [J]. 油气藏评价与开发, 2020, 10(6): 53-57. |
[7] | 王伟,李阳,陈祖华,姚军,梅俊伟,任建华,马波. 基于复杂渗流机理的页岩气藏压后数值模拟研究 [J]. 油气藏评价与开发, 2020, 10(1): 22-29. |
[8] | 张矿生,张同伍,吴顺林,李年银,何思源,李骏. 不同粒径组合支撑剂在裂缝中运移规律模拟 [J]. 油气藏评价与开发, 2019, 9(6): 72-77. |
[9] | 汤勇,廖松林,雷欣慧,余光明,康兴妹. 黄3区低渗透裂缝性油藏提高CO2驱波及对策研究 [J]. 油气藏评价与开发, 2019, 9(3): 9-13. |
[10] | 闫坤,韩培慧,曹瑞波,佟卉. 聚驱后优势渗流通道流线数值模拟识别方法的建立及应用 [J]. 油气藏评价与开发, 2019, 9(2): 33-37. |
[11] | 于倩男,刘义坤,姚迪,刘学,于洋. 精控压裂薄差储层渗流特征实验研究 [J]. 油气藏评价与开发, 2019, 9(1): 15-22. |
[12] | 王健,吴松芸,余恒,张作伟,徐鹏. CO2泡沫改善吸水剖面实验评价研究 [J]. 油气藏评价与开发, 2018, 8(4): 22-25. |
[13] | 罗志锋,张楠林,赵立强. 考虑诱导应力的压裂气井出砂预测 [J]. 油气藏评价与开发, 2018, 8(1): 38-43. |
|