[1] |
董晓霞, 梅廉夫, 全永旺 . 致密砂岩气藏的类型和勘探前景[J]. 天然气地球科学, 2007,18(3):351-355.
|
[2] |
王金琪 . 中国大型致密砂岩含气区展望[J]. 天然气工业, 2000,20(1):10-16.
|
[3] |
马新华, 贾爱林, 谭健 , 等. 中国致密砂岩气开发工程技术与实践[J]. 石油勘探与开发, 2012,39(5):572-579.
|
[4] |
戴金星, 倪云燕, 吴小奇 . 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012,39(3):277-284.
|
[5] |
贾承造, 邹才能, 李建忠 , 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012,33(3):343-350.
|
[6] |
GIDLEY J L, HOLDITCH S A, NIERODE D E , et al. Recent advances in hydraulic fracturing[M]. Rechardson: SPE, 1989.
|
[7] |
庄茁, 柳占立, 王涛 , 等. 页岩水力压裂的关键力学问题[J]. 科学通报, 2016,61(1):72-81.
|
[8] |
姜瑞忠, 蒋廷学, 汪永利 . 水力压裂技术的近期发展及展望[J]. 石油钻采工艺, 2004,26(4):52-57.
|
[9] |
BABCOCK R E, PROKOP C L, KEHLE R O. Distribution of propping agents in vertical fractures[C]// paper API-67-207 presented at the Drilling and Production Practice,1 January 1967, New York, USA.
|
[10] |
SCHOLS R S, VISSER W. Proppant bank build-up in a vertical fracture without fluid loss[C]// paper SPE-4834-MS presented at the SPE European Spring Meeting, 29-30 May 1974, Amsterdam, Netherlands.
|
[11] |
翟恒立 . 水力压裂支撑剂铺置优化实验研究[D].青岛:中国石油大学( 华东), 2012.
|
[12] |
DAYAN A, STRACENER S M, CLARK P E. Proppant transport in slickwater fracturing of shale gas formations[C]// paper SPE-125068-MS presented at the SPE Annual Technical Conference and Exhibition, 4-7 October 2009, New Orleans, Louisiana, USA.
|
[13] |
李靓 . 压裂缝内支撑剂沉降和运移规律实验研究[D]. 成都:西南石油大学, 2014.
|
[14] |
LI N Y, LI J, ZHAO L Q , et al. Laboratory testing on proppant transport in complex-fracture systems[J]. SPE Production & Operations, 2017,32(4):382-391.
doi: 10.3390/molecules24224123
pmid: 31739591
|
[15] |
郭玉杰 . 通道压裂支撑剂在裂缝中的铺置规律研究[D]. 成都:西南石油大学, 2017.
|
[16] |
许文俊, 李勇明, 赵金洲 , 等. 页岩气水平井分段压裂复杂缝网形成机制[J]. 油气藏评价与开发, 2017,7(5):64-73.
|
[17] |
ROOSTAEI M, NOURI A, FATTAHPOUR V , et al. Numerical simulation of proppant transport in hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2018,163:119-138.
doi: 10.1016/j.petrol.2017.11.044
|
[18] |
ZHANG G D, GUTIERREZ M, LI M Z . Numerical simulation of transport and placement of multi-sized proppants in a hydraulic fracture in vertical wells[J]. Granular Matter, 2017,19(2):32.
doi: 10.1007/s10035-017-0718-5
|
[19] |
ZHANG G D, LI M Z, GUTIERREZ M . Simulation of the transport and placement of multi-sized proppant in hydraulic fractures using a coupled CFD-DEM approach[J]. Advanced Powder Technology, 2017,28(7):1704-1718.
doi: 10.1016/j.apt.2017.04.008
|
[20] |
CHANG O, DILMORE R, WANG J Y . Model development of proppant transport through hydraulic fracture network and parametric study[J]. Journal of Petroleum Science and Engineering, 2017,150:224-237.
doi: 10.1016/j.petrol.2016.12.003
|
[21] |
SHIOZAWA S, McCLURE M. Simulation of proppant transport with gravitational settling and fracture closure in a three-dimensional hydraulic fracturing simulator[J]. Journal of Petroleum Science and Engineering, 2016,138:298-314.
doi: 10.1016/j.petrol.2016.01.002
|