油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (3): 348-355.doi: 10.13809/j.cnki.cn32-1825/te.2021.03.009
收稿日期:
2020-11-30
出版日期:
2021-06-22
发布日期:
2021-06-24
作者简介:
杨怀成(1973—),男,硕士,教授级高级工程师,主要从事油气田开发工程工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: 基金资助:
YANG Huaicheng1(),XIA Sujiang2,GAO Qiguo2,MAO Guoyang2
Received:
2020-11-30
Online:
2021-06-22
Published:
2021-06-24
摘要:
常规压裂装备存在效率低、环境污染大以及国内市场水功率保障不足等问题,不能满足国内页岩气开发扩大化和促进产能提升的需求,因此,推荐在页岩气压裂工程中应用全电动压裂装备。通过重点分析全电动压裂装备及技术在常压页岩气资源区块示范应用效果,论证其在页岩气效益开发和绿色低碳发展方面的优势,结果表明:全电动压裂装备能稳定实现高负载、高可靠和连续大排量施工,且施工效率高。相比燃油压裂装备,可节约施工设备、动力、人工以及维护等方面的综合成本40 %以上,污染排放总量减少70 %,有效控制厂界噪声,有利于推动实现常压页岩气效益开发和建设绿色矿山企业。
中图分类号:
杨怀成,夏苏疆,高启国,毛国扬. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发, 2021, 11(3): 348-355.
YANG Huaicheng,XIA Sujiang,GAO Qiguo,MAO Guoyang. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 348-355.
表2
全电动压裂成套装备配置"
配套设备 | 型 号 | 参 数 | 配置数量 |
---|---|---|---|
智能配电装置 | PCR-30 | 输入30 kV;输出10 kV;容量:2.5~25 MVA | 1 |
PCR-10 | 输入10 kV;输出10 kV;容量:2.5~25 MVA | ||
VFD变频系统 | HHE6000-2 | 输入:30/10 kV;输出:0.6 kV;功率:2×4 500 kW。 | 5~6 |
电动泵送设备 | HH6000-2 | 总功率:45 000 kW | 10~12 |
电动混砂设备 | HSQ130 | 20 m3/min | 1 |
电动供液设备 | HHAT60 | 15 m3/min | 2 |
电动混配设备 | HPQ720 | 12 m3/min | 2 |
自动输砂设备 | CSG120 | 容量:120 m3,输砂排量:2.0 m3 | 1 |
电控柔性储罐 | SHG210 | 2 100 m3 | 1 |
智能控制中心 | HHDV-3 | iFrac.PC、iFrac.BC、iFrac.View | 1 |
高低压管汇撬 | SJGH-20 | 接口12个,?180/105 MPa或140 MPa | 1 |
表3
全电动压裂泵送设置高压区间压裂施工参数"
样本井 序号 | 破裂压力 (MPa) | 施工压力 (MPa) | 最高压力 (MPa) | 排量区间 (m3/min) | 最大排量 (m3/min) | 单泵排量 (m3/min) | 实际功率 (kW) | 功率利用率 (%) | 最高砂比 (%) | 平均砂比 (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 105.2 | 104.1~102.3 | 104.1 | 11~13.0 | 13.0 | 1.30 | 22 896.978 | 0.51 | 4 | 2.6 |
2 | 95.8 | 96.7~99.3 | 99.3 | 12~13.0 | 13.0 | 1.30 | 21 841.388 | 0.49 | 8 | 5.0 |
3 | 96.5 | 95.6~101.1 | 101.1 | 13~14.9 | 14.9 | 1.49 | 25 487.090 | 0.57 | 8 | 4.8 |
4 | 98.9 | 98.1~105.0 | 105.0 | 8~10.5 | 10.5 | 1.05 | 18 653.730 | 0.42 | 7 | 4.5 |
5 | 104.1 | 104~108.1 | 108.1 | 7~9.4 | 9.4 | 0.94 | 17 192.316 | 0.38 | 8 | 4.9 |
6 | 107.4 | 104.2~110.7 | 110.7 | 4~9.8 | 9.8 | 0.98 | 18 355.330 | 0.41 | 8 | 4.6 |
7 | 107.6 | 98.3~109.1 | 109.1 | 0.5~9.6 | 9.6 | 0.96 | 17 720.484 | 0.40 | 8 | 4.7 |
8 | 107.8 | 105.5~111.7 | 111.7 | 6~8.5 | 8.5 | 0.85 | 16 064.364 | 0.36 | 8 | 4.8 |
9 | 97.6 | 95~97.8 | 97.8 | 13.5~14 | 14.0 | 1.40 | 23 165.538 | 0.52 | 12 | 6.1 |
10 | 97.1 | 95.2~100.2 | 100.2 | 14~14.5 | 14.5 | 1.45 | 24 582.192 | 0.55 | 13 | 6.2 |
11 | 93.1 | 96.2~100.4 | 100.4 | 13~14 | 14.0 | 1.40 | 23 781.734 | 0.53 | 9 | 5.6 |
12 | 97.3 | 94.9~100.8 | 100.8 | 15~16 | 16.0 | 1.60 | 27 287.188 | 0.61 | 13 | 5.7 |
表4
全电动压裂噪音检测数据"
样本 编号 | 开机待命状态 | 施工状态 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A区半径50 m | B区半径80 m | C区半径100 m | A区半径50 m | B区半径80 m | C区半径100 m | ||||||||||||
A-1 | A-2 | B-1 | B-2 | C-1 | C-2 | A-1 | A-2 | B-1 | B-2 | C-1 | C-2 | ||||||
1 | 55.3 | 62.2 | 49.9 | 50.1 | 47.6 | 46.9 | 66.3 | 65.3 | 63.3 | 58.1 | 61.8 | 51.2 | |||||
2 | 54.7 | 61.8 | 49.8 | 51.4 | 46.8 | 47.1 | 65.9 | 65.6 | 63.8 | 60.1 | 60.9 | 51.3 | |||||
3 | 56.1 | 61.8 | 50.1 | 50.2 | 47.3 | 47.0 | 64.7 | 63.1 | 57.9 | 59.5 | 60.7 | 51.1 | |||||
4 | 54.7 | 60.9 | 48.7 | 51.2 | 48.2 | 45.3 | 65.9 | 65.3 | 62.7 | 60.1 | 60.9 | 50.5 | |||||
5 | 55.1 | 63.1 | 48.7 | 51.1 | 48.1 | 47.1 | 66.5 | 64.7 | 63.2 | 57.8 | 60.9 | 51.5 | |||||
6 | 56.5 | 61.8 | 48.4 | 51.2 | 49.2 | 47.9 | 67.1 | 65.8 | 64.1 | 59.5 | 60.9 | 51.2 | |||||
7 | 54.9 | 61.1 | 50.1 | 51.1 | 47.4 | 46.5 | 67.1 | 66.1 | 62.7 | 57.9 | 60.8 | 51.2 | |||||
8 | 54.9 | 61.7 | 48.7 | 51.2 | 47.8 | 45.9 | 67.1 | 66.4 | 61.2 | 59.1 | 60.7 | 50.9 | |||||
9 | 57.1 | 63.5 | 51.2 | 51.2 | 48.1 | 47.2 | 68.1 | 66.1 | 64.1 | 59.2 | 60.9 | 50.7 | |||||
10 | 57.3 | 61.9 | 51.3 | 50.3 | 48.4 | 47.2 | 66.5 | 66.2 | 63.5 | 60.2 | 61.1 | 52.4 | |||||
11 | 56.1 | 62.2 | 51.2 | 51.1 | 48.4 | 46.6 | 67.2 | 66.3 | 62.8 | 57.4 | 61.5 | 50.9 | |||||
样本平均 | 55.7 | 62.0 | 49.8 | 50.9 | 47.9 | 46.8 | 66.6 | 65.5 | 62.7 | 58.9 | 61.0 | 51.2 | |||||
区域平均 | 58.8 | 50.4 | 47.4 | 66.0 | 60.8 | 56.1 |
[1] | 邹才能. 页岩革命助推我国能源结构转型[J]. 气体分离, 2018, 16(5):73. |
ZOU Caineng. Shale revolution helps transform China's energy structure[J]. Gas Separation, 2018, 16(5):73. | |
[2] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. |
ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1):31-44. | |
[3] | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1):13-35. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35. | |
[4] | 王晓川, 吴根, 闫金定. 世界页岩气开发及技术发展现状与趋势[J]. 科技中国, 2018, 2(12):17-21. |
WANG Xiaochuan, WU Gen, YAN jinding. Status and trend of world shale gas development and technology development[J]. Science and Technology in China, 2018, 2(12):17-21. | |
[5] | 何希鹏, 王运海, 王彦祺, 等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探, 2020, 25(1):126-136. |
HE Xipeng, WANG Yunhai, WANG Yanqi, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the southeast Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(1):126-136. | |
[6] | 聂海宽, 汪虎, 何治亮, 等. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2019, 40(2):131-143. |
NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism,distribution and exploration prospect of normal pressure shale gas resevoir:a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its peripher[J]. Acta Petrolei Sinica, 2019, 40(2):131-143. | |
[7] | 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14. |
HE Xipeng, HE Guisong, GAO Yuqiao, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14. | |
[8] | 潘仁芳, 李笑天, 金吉能, 等. 渝东南盆缘转换带常压页岩气储层非均质性特征及主控因素[J]. 天然气工业, 2018, 38(12):26-36. |
PAN Renfang, LI Xiaotian, JIN Jineng, et al. Heterogeneity characteristics and controlling factors of normal-pressure shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):26-36. | |
[9] | 周成香, 吴壮坤, 丁桥. 电动压裂泵在页岩气井压裂中的先导试验[J]. 石油机械, 2018, 46(11):104-108. |
ZHOU Chengxiang, WU Zhuangkun, DING Qiao. Pilot test of electric fracturing pump in shale gas well[J]. China Petroleum Machinery, 2018, 46(11):104-108. | |
[10] | 王庆群. 利用电力开展页岩气压裂规模应用的分析及建议[J]. 石油机械, 2018, 46(7):89-93. |
WANG Qingqun. Analysis and suggestion on the application of electric power on shale gas fracturing[J]. China Petroleum Machinery, 2018, 46(7):89-93. | |
[11] | 樊开赟, 荣双, 周劲, 等. 电动压裂泵在页岩气压裂中的应用[J]. 钻采工艺, 2017, 40(5):81-83. |
FAN Kaiyun, RONG Shuang, ZHOU Jin, et al. Application of electric fracturing pump in shale gas fracturing[J]. Drilling & Production Technology, 2017, 40(5):81-83. | |
[12] | 吴汉川. 大型压裂装备应用问题解析及发展方向[J]. 石油机械, 2017, 45(12):53-57. |
WU Hanchuan. Issue analysis of large scale fracturing equipment application and its development trend[J] China Petroleum Machinery, 2017, 45(12):53-57. | |
[13] | JACOBS T. New automated hydraulic fracturing tech cuts time and workforce needs[J]. Journal of Petroleum Technology, 2017, 69(5):32-33. |
[14] | 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械, 2016, 44(11):72-79. |
WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016, 44(11):72-79. | |
[15] | SURJAATMADJA J B,. LOGAN T, HUNTER T H, et al. High-pressure, high-flow-rate stimulation equipment for shale fracture treatments[C]// High-pressure, high-flow-rate stimulation equipment for shale fracture treatments, 18-21 March, 2019, Manama, Bahrain. |
[16] | 刘克强, 王培峰, 贾军喜. 我国工厂化压裂关键地面装备技术现状及应用[J]. 石油机械, 2018, 46(4):101-106. |
LIU Keqiang, WANG Peifeng, JIA Junxi. Status and applications of surface equipment for factory fracturing in China[J]. China Petroleum Machinery, 2018, 46(4):101-106. | |
[17] | 张斌, 李磊, 邱勇潮, 等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业, 2020, 40(5):50-57. |
ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natureal Gas Industry, 2020, 40(5):50-57. | |
[18] | 高启国, 高银胜. 130BPM全电动混砂撬在页岩气压裂施工中的应用[J]. 中国石油和化工标准与质量, 2019, 39(24):131-132. |
GAO Qiguo, GAO Yinsheng. Application of 130BPM fully electric sand-mixing pry in shale gas fracturing[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(24):131-132. | |
[19] | 田雨, 谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械, 2017, 45(4):94-97. |
TIAN Yu, XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4):94-97. | |
[20] | 王江阳. HHE6000-02电动压裂系统研制[Z]. 四川宏华电气有限责任公司, 2017. |
WANG Jiangyang. Development of HHE 6000-02 electric fracturing system[Z]. Sichuan Honghua Electric Co. Ltd., 2017. | |
[21] | 童征, 展恩强, 刘颖, 等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济, 2020, 28(7):53-62. |
TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7):53-62. | |
[22] | 程强. 中国页岩气发展迎来2.0时代[N]. 中国石化报,2020-12-07(5) |
CHENG Qiang. China shale gas development ushered in the 2.0 era[N]. Sinopec News, 2020-12-07(5) | |
[23] | 环境保护部, 国家质量监督检验检疫总局. 声环境质量标准:GB 3096—2008[S]. 北京: 中国环境科学出版社, 2008:5. |
Ministry of Environmental Protection of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Environmental quality standard for noise: GB 3096—2008[S]. Beijing: China Environmental Science Press, 2008:5. | |
[24] | 省级温室气体清单编制指南(试行)[S]. 北京: 省级温室气体清单编制指南编写组. |
Guidelines for the preparation of provincial greenhouse gas inventories(trial)[S]. Beijing: Group for the preparation of guidelines for provincial greenhouse gas inventories. | |
[25] | 石油化工生产企业CO2排放量计算方法:SH/T 5000—2011[S]. 北京: 中华人民共和国工业和信息化部, 2011. |
The calculation method of CO2 emissions for petrochemical production: SH/T 5000—2011[S]. Beijing: Ministry of Industry and Information Technology of the People's Republic of China , 2011. | |
[26] | 张增年, 李华川, 郑家伟, 等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺, 2020, 43(2):41-44. |
ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technoligy development prospect of frature quipment[J]. Drilling & Production Technology, 2020, 43(2):41-44. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[3] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[4] | 姚红生,云露,昝灵,张龙胜,邱伟生. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践 [J]. 油气藏评价与开发, 2023, 13(2): 141-151. |
[5] | 蒋恕,李醇,陈国辉,郭彤楼,吴聿元,何希鹏,高玉巧,张培先. 中美常压页岩气赋存状态及其对可动性与产量的影响——以彭水和阿巴拉契亚为例 [J]. 油气藏评价与开发, 2022, 12(3): 399-406. |
[6] | 王运海,任建华,陈祖华,梅俊伟,胡春锋,王伟,卢比. 常压页岩气田一体化效益开发及智能化评价 [J]. 油气藏评价与开发, 2021, 11(4): 487-496. |
[7] | 胡春锋,梅俊伟,李仕钊,卢比,马军,钱劲. 四川盆地东部南川常压页岩气开发效果地质与工程因素分析 [J]. 油气藏评价与开发, 2021, 11(4): 559-568. |
[8] | 何希鹏,高玉巧,何贵松,张培先,刘明,孙斌,汪凯明,周頔娜,任建华. 渝东南南川页岩气田地质特征及勘探开发关键技术 [J]. 油气藏评价与开发, 2021, 11(3): 305-316. |
[9] | 张国荣,王俊方,张龙富,陈士奎. 南川常压页岩气田高效开发关键技术进展 [J]. 油气藏评价与开发, 2021, 11(3): 365-376. |
[10] | 王浩宇,熊亮,史洪亮,董晓霞,魏力民,简万洪. 威荣深层页岩气田开发水平井测试选段技术研究 [J]. 油气藏评价与开发, 2021, 11(1): 86-94. |
[11] | 彭勇民,龙胜祥,何希鹏,唐建信,聂海宽,高玉巧,薛冈,凡渝东,刘雨林. 彭水地区常压页岩气储层特征及有利区评价 [J]. 油气藏评价与开发, 2020, 10(5): 12-19. |
[12] | 刘厚裕. 页岩气低密度三维地震勘探方法适应性评估分析 [J]. 油气藏评价与开发, 2020, 10(5): 34-41. |
[13] | 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用 [J]. 油气藏评价与开发, 2020, 10(5): 70-76. |
[14] | 段承琏,魏风玲,魏瑞玲,刘芳,刘静,吴小丁. 彭水区块常压页岩气高效排采技术研究 [J]. 油气藏评价与开发, 2020, 10(1): 64-70. |
[15] | 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策 [J]. 油气藏评价与开发, 2019, 9(5): 1-13. |
|