[1] |
MAUBEUGE F, ERIC A, BERTRAND O, A model for interpreting thermometrics[C]// Paper SPE-28588-MS presented at the SPE Annual Technical Conference and Exhibition, September 25-28, 1994, New Orleans, Louisiana.
|
[2] |
YOSHIOKA K, ZHU D, HILL A D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007, 22(4):425-433.
|
[3] |
OBINNA O D, HORNE R N. Modeling reservoir temperature transinents and matching to permanent downhole gauge data for reservoir parameter estimation[C]// Paper SPE-115791-MS presented at the SPE Annual Technical Conference and Exhibition, September 21-24, 2008, Denver, Colorado, USA.
|
[4] |
MURADOV K, DAVID D. Novel analytical methods of temperature interpretation in horizontal wells[J]. SPE Journal, 2011, 16(3):637-647.
doi: 10.2118/131642-PA
|
[5] |
ZHU S Y. Theoretical study on the interpretation of inflow profile based on the distributed optical fiber temperature sensing[D]. Chengdu: Southwest Petroleum University, 2016.
|
[6] |
LUO H W, LI H T, ZHOU X J, et al. Modeling temperature behavior of multistage fractured horizontal well with two-phase flow in low permeability gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 173:1187-1209.
doi: 10.1016/j.petrol.2018.10.015
|
[7] |
刘为明, 李海涛, 王永清, 等. 基于DTS测试的气藏水平井温度分布特征实验[J]. 断块油气田, 2020, 27(2):228-232.
|
|
LIU Weiming, LI Haitao, WANG Yongqing, et al. Experimental study on temperature distribution characteristics of horizontal wells in gas reservoir based on DTS test[J]. Fault-Block Oil & Gas Field, 2020, 27(2):228-232.
|
[8] |
朱世琰, 李海涛, 张建伟, 等. 分布式光纤测温技术在油田开发中的发展潜力[J]. 油气藏评价与开发, 2015, 5(5):69-75.
|
|
ZHU Shiyan, LI Haitao, ZHANG Jianwei, et al. Potential of fiber optic distributed temperature sensing technology for oilfield development[J]. Reservoir Evluation and Development, 2015, 5(5):69-75.
|
[9] |
宋红伟, 郭海敏, 戴家才, 等. 分布式光纤井温法产液剖面解释方法研究[J]. 测井技术, 2009, 33(4):384-387.
|
|
SONG Hongwei, GUO Haimin, DAI Jiacai, et al. Study on log interpretation of the optical fiber distributed temperature measurement system[J]. Well Logging Technology, 2009, 33(4):384-387.
|
[10] |
熊俊雅, 杨兆中, 杨磊, 等. 压裂填砂裂缝导流能力室内研究进展与展望[J]. 特种油气藏, 2020, 27(3):1-7.
|
|
XIONG Junya, YANG Zhaozhong, YANG Lei, et al. Laboratory progress and prospect of sand-packed fracture conductivity in fracturing[J]. Special Oil and Gas Reservoir, 2020, 27(3):1-7.
|
[11] |
杨兆中, 陈倩, 李小刚, 等. 鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J]. 油气地质与采收率, 2019, 26(2):120-126.
|
|
YANG Zhaozhong, CHEN Qian, LI Xiaogang, et al. Optimization of multi-cluster staged fracturing for horizontal well in low-permeability tight sandstone gas reservoir, Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2):120-126.
|
[12] |
罗红文, 李海涛, 刘会斌, 等. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3):389-397.
|
|
LUO Hongwen, LI Haitao, LIU Huibin, et al. Predicting temperature profiles of fractured horizontal well with two-phase flow in low-permeability gas reservoir[J]. Natural Gas Geoscience, 2019, 30(3):389-397.
|
[13] |
罗红文, 李海涛, 蒋贝贝, 等. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法等[J]. 天然气地球科学, 2019, 30(11):1639-1645.
|
|
LUO Hongwen, LI Haitao, JIANG Beibei, et al. Anovel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data[J]. Natural Gas Geoscience, 2019, 30(11):1639-1645.
|
[14] |
王轲, 刘彪, 张俊, 等. 高温高压气井井筒温度场计算与分析[J]. 石油机械, 2019, 47(1):8-13.
|
|
WANG Ke, LIU Biao, ZHANG Jun, et al. Calculation and analysis of wellbore temperature field in HTHP gas wells[J]. China Petroleum Machinery, 2019, 47(1):8-13.
|
[15] |
冯剑, 许博越, 付建红, 等. 深水压井井筒瞬态传热及复杂流动行为研究[J]. 石油机械, 2021, 49(2):1-6.
|
|
FENG Jian, XU Boyue, FU Jianhong, et al. Study on wellbore transient heat transfer and complex flow behavior during deepwater well killing[J]. China Petroleum Machinery, 2021, 49(2):1-6.
|
[16] |
董胜伟, 王子健, 曹飞, 等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏, 2019, 27(5):157-161.
|
|
DONG Shengwei, WANG Zijian, CAO Fei, et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoir in deep water[J]. Special Oil and Gas Reservoir, 2019, 27(5):157-161.
|
[17] |
姚军, 刘均荣, 张凯. 国外智能井技术[M]. 北京: 石油工业出版社, 2011.
|
|
YAO Jun, LIU Junrong, ZHANG Kai. Foreign intelligent well technology[M]. Beijing: Petroleum Industry Press, 2011.
|
[18] |
韩大匡, 陈钦雷, 闫存章. 油藏数值模拟基础[M]. 北京: 石油工业出版社, 1993.
|
|
HAN Dakuang, CHEN Qinlei, YAN Cunzhang. Fundamentals of reservoir numerical simulation[M]. Beijing: Petroleum Industry Press, 1993.
|
[19] |
白博峰, 郭烈锦, 陈学俊. 最小二乘原理求解多维瞬态导热反问题[J]. 计算物理, 1997,(Z1):315-317.
|
|
BAI Bofen, GUO Liejin, CHEN Xuejun. A solution of multi-dimensional transient inverse heat conduction problem using the least square method[J]. Chinese Journal of Computational Physics, 1997, (Z1):315-317.
|
[20] |
韩乔明. 解半定规划的Levenberg-Marquardt方法[J]. 数值计算和计算机应用, 1998, 19(2):99-106.
|
|
HAN Qiaoming. Levenberg-Marquardt method for semidefinite programming[J]. Journal on Numerical Methods and Computer Application, 1998, 19(2):99-106.
|
[21] |
李合平, 邹明虎, 王志云, 等. 基于L-M算法的雷达板级电路快速故障诊断[J]. 测试技术学报, 2004, 18(4):364-368.
|
|
LI Heping, ZOU Minghu, WANG Zhiyun, et al. Board-grade circuit fault quick diagnosis in radar based on L-M algorithm[J]. Journal of Test and Measurement Technology, 2004, 18(4):364-368.
|
[22] |
王彦飞. 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007.
|
|
WANG Yanfei. Computational methods for inverse problems and their applications[M]. Beijing: Higher Education Press, 2007.
|
[23] |
张广智, 王丹阳, 印兴耀, 等. 基于MCMC的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11):2926-2932.
|
|
ZHANG Guangzhi, WANG Danyang, YIN Xingyao, et al. Study on prestack seismic inversion using Markov Chain Monte Carlo[J]. Chinese Journal of Geophysics, 2011, 54(11):2926-2932.
|
[24] |
邵伟. 蒙特卡洛方法及在一些统计模型中的应用[D]. 济南:山东大学, 2012.
|
|
SHAO Weil. Monte carlo methods and their applications in some statistical model[D]. Jinan: Shandong University, 2012.
|
[25] |
饶盛文. 低渗油藏两相渗流数值模拟研究[D]. 成都:西南石油大学, 2009.
|
|
RAO Shengwen. Numerical simulation of two-phase flow in low permeability reservoir[D]. Chengdu: Southwest Petroleum University, 2009.
|
[26] |
李克文, 周广悦, 路慎强, 等. 一种基于机器学习的有利区评价新方法[J]. 特种油气藏, 2019, 26(3):7-11.
|
|
LI Kewen, ZHOU Guangyue, LU Shenqiang, et al. A new method for favorable zone evaluation based on machine learning[J]. Special Oil and Gas Reservoir, 2019, 26(3):7-11.
|
[27] |
王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64.
|
|
WANG Zanwei. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower Shihezi formation in Linxing area of east Ordos basin[J]. Unconventional Oil & Gas, 2020, 7(1):59-64.
|
[28] |
王桐, 魏虎, 孙卫, 等. 致密砂岩储层可动流体赋存特征及主控因素分析——以鄂尔多斯盆地华庆地区长63储层为例[J]. 非常规油气, 2020, 7(2):56-63.
|
|
WANG Tong, WEI Hu, SUN Wei, et al. Movable fluid traits and its main controlling factors in tight sandstone reservoirs: taking Chang-63 of Huaqing area in Ordos basin, China as an instance[J]. Unconventional Oil & Gas, 2020, 7(2):56-63.
|
[29] |
白慧芳, 施里宇, 张磊, 等. 鄂尔多斯盆地致密砂岩气藏启动压力梯度实验研究[J]. 非常规油气, 2020, 7(3):60-64.
|
|
BAI Huifang, SHI Liyu, ZHANG Lei, et al. The actuating pressure gradient experimental study of tight sandstone gas reservoir in Ordos basin[J]. Unconventional Oil & Gas, 2020, 7(3):60-64.
|
[30] |
刘宝平, 薛波, 崔宏俊, 等. 鄂尔多斯盆地延长气田致密砂岩气产能及压降预测研究[J]. 非常规油气, 2019, 6(6):56-62.
|
|
LIU Baoping, XUE Bo, CUI Hongjun, et al. Research on calculating productivity & pressure drop of tight sandstone gas of Yanchang gas field[J]. Unconventional Oil & Gas, 2019, 6(6):56-62.
|
[31] |
闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6):47-56.
|
|
YAN Jian, QIN Dapeng, WANG Pingping, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6):47-56.
|
[32] |
周雪晴, 张占松, 张超谟, 等. 基于矿物组分和成岩作用的致密砂岩储层脆性评价方法——以鄂尔多斯盆地东北部某区块为例[J]. 油气地质与采收率, 2017, 24(5):10-16.
|
|
ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. A new brittleness evaluation method for tight sandstone reservoir based on mineral compositions and diagenesis: A case study of a certain block in the northeastern Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5):10-16.
|