[1] |
艾军, 张金成, 臧艳彬, 等. 涪陵页岩气田钻井关键技术[J]. 石油钻探技术, 2014, 42(5):9-15.
|
|
AI Jun, ZHANG Jincheng, ZANG Yanbin, et al. The key drilling technologies in Fuling Shale Gas Field[J]. Petroieum Drilling Techniques, 2014, 42(5):9-15.
|
[2] |
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3):425-430.
|
|
WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3):425-430.
|
[3] |
汪宏金, 邢克, 夏钦锋. 涪陵页岩气田无人值守集气站建设[J]. 油气田地面工程, 2019, 38(3):69-74.
|
|
WANG Hongjin, XING Ke, XIA Qinfeng. Construction of the unattended gas gathering stations in Fuling Shale Gas Field[J]. Oil-Gasfield Surface Engineering, 2019, 38(3):69-74.
|
[4] |
李海, 任惠琴, 夏维嘉, 等. 数据集成助力页岩气勘探开发[J]. 中国管理信息化, 2019, 22(3):72-74.
|
|
LI Hai, REN Huiqin, XIA Weijia, et al. Data integration helps shale gas exploration and development[J]. China Management Informationization, 2019, 22(3):72-74.
|
[5] |
王洪峰, 王胜军, 朱松柏, 等. “互联网+”时代智慧油气田建设的构想与探索[J]. 油气田地面工程, 2018, 37(8):1-5.
|
|
WANG Hongfeng, WANG Shengjun, ZHU Songbai, et al. Conception and exploration of the smart oil and gas field construction in "Internet+" Era[J]. Oil-Gasfield Surface Engineering, 2018, 37(8):1-5.
|
[6] |
李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4):1-11.
|
|
LI Yang, LIAN Peiqing, XUE Zhaojie, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum, 2020, 44(4):1-11.
|
[7] |
胡耀义. 一种智能化油气田建设的解决方案[J]. 信息系统工程, 2020(2):148-149.
|
|
HU Yaoyi. A Solution for intelligent oil and gas field construction[J]. Information System Engineering, 2020(2):148-149.
|
[8] |
NOSHI C I, ASSEM A I, SCHUBERT J J. The role of big data analytics in exploration and production: A review of benefits and applications [C]// Paper SPE-193776-MS presented at the SPE International Heavy Oil Conference and Exhibition, Kuwait City, Kuwait, December 2018.
|
[9] |
MOHAGHEGH S D. Shale descriptive analytics: Which parameters are controlling production in shale [C]// Paper SPE-196226-MS presented at the SPE Annual Technical Conference and Exhibition, 2019.
|
[10] |
王强, 叶梦旎, 李宁, 等. 页岩气藏数值模拟模型研究进展[J]. 中国地质, 2019, 46(6):1284-1299.
|
|
WANG Qiang, YE Mengni, LI Ning, et al. Research progress of numerical simulation models for shale gas reservoirs[J]. Geology in China, 2019, 46(6):1284-1299.
|
[11] |
沈金才, 刘尧文. 涪陵焦石坝区块页岩气井产量递减典型曲线应用研究[J]. 石油钻探技术, 2016, 44(4):88-95.
|
|
SHEN Jincai, LIU Yaowen. Application study on typical production decline curves of shale gas wells in the Fuling Jiaoshiba Block[J]. Petroleum Driiiing Techniques, 2016, 44(4):88-95.
|
[12] |
郭建林, 贾爱林, 贾成业, 等. 页岩气水平井生产规律[J]. 天然气工业, 2019, 39(10):53-58.
|
|
GUO Jianlin, JIA Ailin, JIA Chengye, et al. Production laws of shale-gas horizontal wells[J]. Natural Gas Industry, 2019, 39(10):53-58.
|
[13] |
蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气“十三五”发展成果与展望[J]. 石油与天然气地质, 2021, 42(1):16-27.
|
|
CAI Xunyu, ZHAO Peirong, GAO Bo, et al. Sinopec’s Shale Gas Development Achievements during the "Thirteenth Five-Year Plan” Period and Outlook for the Future[J]. Oil & Gas Geology, 2021, 42(1):16-27.
|
[14] |
LEIVA L A, VIDAL E. Warped K-Means: An algorithm to cluster sequentially-distributed data[J]. Information Sciences, 2013, 237:196-210.
doi: 10.1016/j.ins.2013.02.042
|
[15] |
MEOR HASHIM, MEOR M, YUSOFF M, et al. Utilizing artificial neural network for real-time prediction of differential sticking symptoms[C]. IPTC21221, 2021.
|
[16] |
DIAZ S P, VILAR J A. Comparing several parametric and nonparametric approaches to time series clustering: A simulation study. Journal of Classification. 2010, 27(3):333-362.
doi: 10.1007/s00357-010-9064-6
|
[17] |
XU R, ZHOU M L. Elman neural network-based identification of Krasnosel’skii-Pokrovskii model for magnetic shape memory alloys actuator[J]. IEEE Transactions on Magnetics, 2017: 1-1.
|