油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (2): 176-183.doi: 10.13809/j.cnki.cn32-1825/te.2021.02.005
收稿日期:
2020-10-20
出版日期:
2021-04-26
发布日期:
2021-04-30
作者简介:
周桦(1987—),女,硕士,工程师,从事页岩气地质综合研究。地址:四川省成都市高新区吉泰路688号,邮政编码:610041。E-mail: ZHOU Hua(),WEI Limin,WANG Tong,WANG Yan,PANG Heqing,ZHANG Tiancao
Received:
2020-10-20
Online:
2021-04-26
Published:
2021-04-30
摘要:
针对威荣页岩气田五峰组—龙马溪组一段页岩储层纵向非均质性强、精细评价难度大的问题,在深入研究威荣深层页岩气储层特征及主要影响因素的基础上,优选TOC(总有机碳含量)、含气量、有机孔占比、脆性矿物含量、黏土矿物含量、脆性指数及水平应力差异系数作为储层评价的关键参数,采用灰色关联分析法对储层品质进行定量化表征。研究结果表明:①通过计算评价参数与储层品质的关联度,明确含气量是指示优质储层的首要参数;②通过计算储层品质综合评价指标(Q),可将储层划分为4个等级,A级储层主要为生物硅质页岩和含钙-黏土质-硅质页岩,与目前水平井靶窗位置一致,研究成果与开发实践具有较高吻合度。该方法实现了多因素影响下储层品质的精细评价,为明确优质页岩储层提供了依据,对同类型气藏的评价与开发具有借鉴意义。
中图分类号:
周桦,魏力民,王同,王岩,庞河清,张天操. 威荣深层页岩气储层精细评价方法及应用[J]. 油气藏评价与开发, 2021, 11(2): 176-183.
ZHOU Hua,WEI Limin,WANG Tong,WANG Yan,PANG Heqing,ZHANG Tiancao. Evaluation method of Weirong deep shale gas reservoir and its application[J]. Reservoir Evaluation and Development, 2021, 11(2): 176-183.
表1
龙马溪组页岩气储层评价标准[8,9,10]"
评价 分类 | 评价参数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC(%) | 含气量(m3/t) | 孔隙度(%) | 脆性矿物含量(%) | 黏土矿物含量(%) | 层理缝 | |||||||||||
中国石化 | 中国石油 | 中国石化 | 中国石油 | 中国石化 | 中国石油 | 中国石化 | 中国石油 | 中国石化 | 中国石油 | 中国石化 | ||||||
Ⅰ类 | ≥4 | ≥3 | ≥4 | ≥3 | ≥6 | ≥5 | ≥50 | ≥55 | ≤30 | ≤30 | 发育—极发育 | |||||
Ⅱ类 | 2 ~ 4 | 2 ~ 3 | 2 ~ 4 | 2 ~ 3 | 4 ~ 6 | 3 ~ 5 | 40 ~ 50 | 45 ~ 55 | 30 ~ 50 | 30 ~ 40 | 较发育 | |||||
Ⅲ类 | <2 | 1 ~ 2 | <2 | 1 ~ 2 | 2 ~ 4 | 2 ~ 3 | <40 | 30 ~ 45 | >50 | 40 ~ 60 | 欠发育 |
表2
威荣深层页岩气储层评价参数"
储层类型 | TOC(N=5) (%) | 含气量(N=5) (m3/t) | 有机孔占比 (N=5)(%) | 脆性矿物含量(N=5)(%) | 黏土矿物含量(N=5)(%) | 脆性指数 (N=4)(%) | 水平应力差异 (N=4)系数 | |
---|---|---|---|---|---|---|---|---|
黏土质 页岩储层 | 范围 平均 | 1.05 ~ 1.47 1.20 | 2.32 ~ 2.98 2.65 | 8.7 ~ 11.6 10.00 | 42.37 ~ 46.89 43.70 | 50.97 ~ 52.49 51.80 | 20.7 ~ 28.5 25.90 | 0.15 ~ 0.28 0.20 |
硅质-钙质- 黏土质页岩储层 | 范围 平均 | 2.62 ~ 3.52 2.90 | 6.98 ~ 7.99 7.35 | 13.2 ~ 20.6 15.00 | 61.39 ~ 64.59 62.40 | 33.03 ~ 33.76 33.50 | 41.5 ~ 46.5 44.30 | 0.08 ~ 0.23 0.17 |
硅质-黏土质 页岩储层 | 范围 平均 | 2.41 ~ 3.61 3.00 | 6.34 ~ 7.78 7.18 | 17.9 ~ 25.6 20.30 | 47.40 ~ 60.16 52.35 | 32.22 ~ 47.95 42.10 | 33.9 ~ 42.0 38.90 | 0.07 ~ 0.20 0.15 |
黏土质-硅质 页岩储层 | 范围 平均 | 1.20 ~ 5.29 3.40 | 8.51 ~ 13.31 12.18 | 20.7 ~ 61.6 38.80 | 55.94 ~ 60.71 59.20 | 32.59 ~ 38.45 35.60 | 43.6 ~ 59.1 51.10 | 0.10 ~ 0.28 0.19 |
生物硅质 页岩储层 | 范围 平均 | 3.23 ~ 5.31 4.60 | 9.11 ~ 12.76 11.48 | 42.6 ~ 78.8 69.70 | 71.73 ~ 76.39 74.20 | 14.59 ~ 20.43 18.30 | 32.3 ~ 50.5 42.05 | 0.05 ~ 0.25 0.16 |
含钙-黏土质- 硅质页岩储层 | 范围 平均 | 2.98 ~ 5.55 4.80 | 6.74 ~ 11.31 10.00 | 35.67 ~ 62.15 59.80 | 60.76 ~ 69.61 64.70 | 27.38 ~ 34.28 30.00 | 39.4 ~ 54.8 49.95 | 0.09 ~ 0.24 0.17 |
钙质-黏土质- 硅质页岩储层 | 范围 平均 | 1.74 ~ 5.10 3.90 | 4.61 ~ 10.29 7.79 | 27.36 ~ 57.29 49.80 | 62.69 ~ 72.67 67.10 | 25.19 ~ 31.73 28.70 | 44.9 ~ 51.6 47.40 | 0.07 ~ 0.21 0.15 |
表3
不同母序列条件下的灰色关联度矩阵"
母序列 | 子序列的灰色关联度 | ||||||
---|---|---|---|---|---|---|---|
TOC | 含气量 | 有机孔占比 | 脆性矿物含量 | 黏土矿物含量 | 脆性指数 | 水平应力差异系数 | |
TOC | 1.000 0 | 0.844 4 | 0.747 7 | 0.785 1 | 0.571 3 | 0.722 8 | 0.452 7 |
含气量 | 0.849 8 | 1.000 0 | 0.755 3 | 0.747 3 | 0.606 4 | 0.757 7 | 0.477 6 |
有机孔占比 | 0.747 3 | 0.747 2 | 1.000 0 | 0.690 2 | 0.679 7 | 0.624 8 | 0.563 3 |
脆性矿物含量 | 0.784 8 | 0.738 4 | 0.690 2 | 1.000 0 | 0.501 3 | 0.853 0 | 0.390 6 |
黏土矿物含量 | 0.491 8 | 0.518 0 | 0.609 4 | 0.421 3 | 1.000 0 | 0.414 1 | 0.548 9 |
可压裂指数 | 0.731 7 | 0.757 7 | 0.634 9 | 0.858 9 | 0.504 1 | 1.000 0 | 0.388 3 |
水平应力差异系数 | 0.463 8 | 0.477 6 | 0.573 5 | 0.402 5 | 0.633 3 | 0.388 3 | 1.000 0 |
平均值 | 0.724 2 | 0.726 2 | 0.715 9 | 0.700 8 | 0.642 3 | 0.680 1 | 0.545 9 |
表4
威荣深层页岩气储层评价参数的权重系数"
母序列 | 子序列的权重系数 | ||||||
---|---|---|---|---|---|---|---|
TOC | 含气量 | 有机孔占比 | 脆性矿物含量 | 黏土矿物含量 | 脆性指数 | 水平应力差异系数 | |
TOC | 0.195 2 | 0.164 8 | 0.145 9 | 0.153 2 | 0.111 5 | 0.141 1 | 0.088 3 |
含气量 | 0.163 6 | 0.192 5 | 0.145 4 | 0.143 9 | 0.116 7 | 0.145 9 | 0.092 0 |
有机孔占比 | 0.147 9 | 0.147 9 | 0.197 9 | 0.136 6 | 0.134 5 | 0.123 7 | 0.111 5 |
脆性矿物含量 | 0.158 3 | 0.148 9 | 0.139 2 | 0.201 7 | 0.101 1 | 0.172 0 | 0.078 8 |
黏土矿物含量 | 0.122 8 | 0.129 4 | 0.152 2 | 0.105 2 | 0.249 8 | 0.103 4 | 0.137 1 |
可压裂指数 | 0.150 1 | 0.155 4 | 0.130 2 | 0.176 2 | 0.103 4 | 0.205 1 | 0.079 6 |
水平应力差异系数 | 0.117 7 | 0.121 2 | 0.145 6 | 0.102 2 | 0.160 8 | 0.098 6 | 0.253 9 |
表5
威荣深层页岩气储层品质综合评价指标"
储层类型 | 不同母序列条件下的储层品质综合评价指标 | ||||||
---|---|---|---|---|---|---|---|
TOC | 含气量 | 有机孔占比 | 脆性矿物含量 | 黏土矿物含量 | 脆性指数 | 水平应力差异系数 | |
黏土质页岩储层 | 0.300 0 | 0.296 2 | 0.273 4 | 0.334 3 | 0.227 7 | 0.339 4 | 0.232 7 |
硅质-钙质-黏土质页岩储层 | 0.546 3 | 0.542 3 | 0.498 2 | 0.577 4 | 0.459 2 | 0.583 3 | 0.415 7 |
硅质-黏土质页岩储层 | 0.510 1 | 0.505 1 | 0.465 9 | 0.532 3 | 0.411 0 | 0.537 4 | 0.386 3 |
黏土质-硅质页岩储层 | 0.682 4 | 0.686 5 | 0.637 6 | 0.703 1 | 0.566 6 | 0.712 2 | 0.516 1 |
生物硅质页岩储层 | 0.840 9 | 0.834 7 | 0.816 0 | 0.852 2 | 0.755 6 | 0.846 3 | 0.677 3 |
含钙-黏土质-硅质页岩储层 | 0.765 6 | 0.754 9 | 0.729 9 | 0.774 9 | 0.654 9 | 0.772 4 | 0.598 5 |
钙质-黏土质-硅质页岩储层 | 0.683 7 | 0.673 7 | 0.653 2 | 0.704 2 | 0.595 3 | 0.701 9 | 0.541 4 |
[1] | 纪友亮. 油气储层地质学[M]. 青岛: 中国石油大学出版社, 2019. |
JI Youliang. Petroleum reservoir geology[M]. Qingdao: China University of Petroleum Press, 2019. | |
[2] | 于炳松. 页岩气储层的特殊性及其评价思路和内容[J]. 地学前缘, 2012,19(3):252-258. |
YU Bingsong. Particularity of shale gas reservoir and its evaluation[J]. Earth Science Frontiers, 2012,19(3):252-258. | |
[3] |
朱华, 姜文利, 边瑞康, 等. 页岩气资源评价方法体系及其应用——以川西坳陷为例[J]. 天然气工业, 2009,29(12):130-134.
doi: 10.3787/j.issn.1000-0976.2009.12.037 |
ZHU Hua, JIANG Wenli, BIAN Ruikang, et al. Shale gas assessment methodology and its application: A case study of the western Sichuan Depression[J]. Natural Gas Industry, 2009,29(12):130-134.
doi: 10.3787/j.issn.1000-0976.2009.12.037 |
|
[4] | 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012,19(5):356-363. |
TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012,19(5):356-363. | |
[5] |
郭少斌, 黄磊. 页岩气储层含气性影响因素及储层评价——以上扬子古生界页岩气储层为例[J]. 石油实验地质, 2013,35(6):601-606.
doi: 10.11781/sysydz201306601 |
GUO Shaobin, HUANG Lei. Gas-bearing influential factors and evaluation of shale gas reservoir: A case study of Paleozoic shale gas reservoir in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2013,35(6):601-606.
doi: 10.11781/sysydz201306601 |
|
[6] | 熊亮, 魏力民, 史洪亮. 川南龙马溪组储层分级综合评价技术及应用——以四川盆地威荣页岩气田为例[J]. 天然气工业, 2019,39(S1):60-65. |
XIONG Liang, WEI Limin, SHI Hongliang. Comprehensive evaluation technology and application of shale gas reservoir in Longmaxi Formation in Southern Sichuan: A case study of Weirong Shale Gas Field in Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):60-65. | |
[7] | 魏力民, 王岩, 张天操, 等. 四川盆地南部深层页岩储层地质模型的建立[J]. 天然气工业, 2019,39(S1):66-70. |
WEI Limin, WANG Yan, ZHANG Tiancao, et al. Establishment of geological model of deep shale reservoirs in the southern Sichuan Basin[J]. Natural Gas Industry, 2019,39(S1):66-70. | |
[8] | 焦方正. 页岩气“体积开发”理论认识,核心技术与实践[J]. 天然气工业, 2019,39(5):1-14. |
JIAO Fangzheng. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019,39(5):1-14. | |
[9] | 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019,39(3):11-20. |
WU Hengzhi, XIONG Liang, GE Zhongwei, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 2019,39(3):11-20. | |
[10] | 中华人民共和国国家能源局. NB/T 14001-2015 页岩气藏描述技术规范[S]. 北京: 中国电力出版社, 2016. |
National Energy Administration of the People’s Republic of China. NB/T 14001—2015 Technical Specification for Shale Gas Reservoir Description[S]. Beijing: China Electric Power Press, 2016. | |
[11] |
涂乙, 邹海燕, 孟海平, 等. 页岩气评价标准与储层分类[J]. 石油与天然气地质, 2014,35(1):153-158.
doi: 10.11743/ogg20140120 |
TU Yi, ZOU Haiyan, MENG Haiping, et al. Evaluation criteria and classification of shale gas reservoirs[J]. Oil & Gas Geology, 2014,35(1):153-158.
doi: 10.11743/ogg20140120 |
|
[12] | 郭英海, 赵迪斐. 微观尺度海相页岩储层微观非均质性研究[J]. 中国矿业大学学报, 2015,44(2):300-307. |
GUO Yinghai, ZHAO Difei. Analysis of micro-scale heterogeneity characteristics in marine shale gas reservoir[J]. Journal of China University of Mining & Technology, 2015,44(2):300-307. | |
[13] | 蒋廷学, 卞晓冰. 页岩气储层评价新技术——甜度评价方法[J]. 石油钻探技术, 2016,44(4):1-6. |
JIANG Tingxue, BIAN Xiaobing. The novel technology of shale gas play evaluation: sweetness calculation method[J]. Petroleum Drilling Techniques, 2016,44(4):1-6. | |
[14] | 乔辉, 贾爱林, 贾成业, 等. 页岩气储层关键参数评价及进展[J]. 地质科技情报, 2018,37(2):157-164. |
QIAO Hui, JIA Ailin, JIA Chengye, et al. Research progress in key parameters of shale gas reservoir evaluation[J]. Geological Science and Technology Information, 2018,37(2):157-164. | |
[15] | 赵云胜, 龙昱, 赵钦球, 等. 灰色系统理论在地学中的应用研究[M]. 武汉: 华中理工大学出版社, 1997. |
ZHAO Yunsheng, LONG Yi, ZHAO Qinqiu, et al. Research on application of grey system theory in earth science[M]. Wuhan: Huazhong University of Science & Technology Press, 1997. | |
[16] | 詹泽东, 郭科, 李祖友, 等. 灰色系统在构造建模中的应用[J]. 成都理工大学学报(自然科学版), 2015,42(1):98-103. |
ZHAN Zedong, GUO Ke, LI Zuyou, et al. Application of grey system in structure modeling[J]. Journal of Chengdu University of Technology: Sci & Technol Ed, 2015,42(1):98-103. | |
[17] | 詹泽东, 周桦, 郭莉霞, 等. 基于灰色关联度的气井主控因素定量描述[J]. 工业安全与环保, 2015,41(9):55-57. |
ZHAN Zedong, ZHOU Hua, GUO Lixia, et al. The modeling and application of the key factors of controlling production of gas well based on gray correlation[J]. Industrial Safety and Environmental Protection, 2015,41(9):55-57. | |
[18] |
蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010,30(10):7-12.
doi: 10.3787/j.issn.1000-0976.2010.10.002 |
JIANG Yuqiang, DONG Dazhong, QI Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010,30(10):7-12.
doi: 10.3787/j.issn.1000-0976.2010.10.002 |
|
[19] | 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014,35(1):184-196. |
JIANG Zaixing, ZHANG Wenzhao, LIANG chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014,35(1):184-196. | |
[20] | 王汉青, 陈军斌, 张杰, 等. 基于权重分配的页岩气储层可压性评价新方法[J]. 石油钻探技术, 2016,44(3):88-94. |
WANG Hanqing, CHEN Junbin, ZHANG Jie, et al. A new method of fracability evaluation of shale gas reservoir based on weight allocation[J]. Petroleum Drilling Techniques, 2016,44(3):88-94. | |
[21] | 方辉煌, 汪吉林, 宫云鹏, 等. 基于灰色模糊理论的页岩气储层评价——以重庆南川地区龙马溪组页岩为例[J]. 岩性油气藏, 2016,28(5):76-81. |
FANG Huihuang, WANG Jilin, GONG Yunpeng, et al. Evaluation of shale gas reservoirs based on gray fuzzy theory: A case study from Longmaxi Formation in Nanchuan area, Chongqing[J]. Lithologic reservoirs, 2016,28(5):76-81. | |
[22] | 沈骋, 任岚, 赵金洲, 等. 页岩储集层综合评价指标及其应用——以四川盆地东南缘焦石坝地区奥陶系五峰组—志留系龙马溪组为例[J]. 石油勘探与开发, 2017,44(4):649-658. |
SHEN Cheng, REN Lan, ZHAO Jinzhou, et al. A comprehensive evaluation index for shale reservoirs and its application: A case study of the Ordovician Wufeng Formation to Silurian Longmaxi Formation in southeastern margin of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017,44(4):649-658. | |
[23] | TIAN H, PAN L, XIAO X, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine & Petroleum Geology, 2013,48:8-19. |
[24] |
LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015,87(3):119-132.
doi: 10.1016/j.orggeochem.2015.07.010 |
[25] | 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用(第五版)[M]. 北京: 科学出版社, 2010: 62-104. |
LIU Sifeng, DANG Yaoguo, FANG Zhigeng, et al. Grey system theory and its application[M]. 5th edition. Beijing: Science Press, 2010: 62-104. | |
[26] |
ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation[J]. AAPG Bulletin, 2009,92(1):87-125.
doi: 10.1306/09040707048 |
[1] | 陶金雨,申宝剑,胡宗全,潘安阳. 桂北地区下石炭统鹿寨组页岩储层孔隙特征及评价 [J]. 油气藏评价与开发, 2022, 12(3): 437-444. |
[2] | 朱化蜀,王希勇,徐晓玲,郭治良,黄河淳. 威荣深层页岩长水平段工程钻探能力延伸极限研究 [J]. 油气藏评价与开发, 2022, 12(3): 506-514. |
[3] | 杜洋,倪杰,雷炜,周兴付,李莉,卜淘. 威荣深层页岩气井油管最优参数设计研究 [J]. 油气藏评价与开发, 2022, 12(3): 526-533. |
[4] | 区舫,杨辉廷,黄晓兵. X气田飞仙关组礁滩相储层测井解释方法应用 [J]. 油气藏评价与开发, 2021, 11(5): 744-752. |
[5] | 赵军,张涛,何胜林,张桓荣,韩东,汤翟. 基于参数优选的储层渗透率深度置信网络模型预测初探 [J]. 油气藏评价与开发, 2021, 11(4): 577-585. |
[6] | 赵勇,李南颖,杨建,程诗胜. 深层页岩气地质工程一体化井距优化——以威荣页岩气田为例 [J]. 油气藏评价与开发, 2021, 11(3): 340-347. |
[7] | 何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策 [J]. 油气藏评价与开发, 2021, 11(2): 135-145. |
[8] | 熊亮,庞河清,赵勇,魏力民,周桦,曹茜. 威荣深层页岩气储层微观孔隙结构表征及分类评价 [J]. 油气藏评价与开发, 2021, 11(2): 154-163. |
[9] | 杨建,詹国卫,赵勇,任春昱,屈重玖. 川南深层页岩气超临界吸附解吸附特征研究 [J]. 油气藏评价与开发, 2021, 11(2): 184-189. |
[10] | 郭彤楼. 深层页岩气勘探开发进展与攻关方向 [J]. 油气藏评价与开发, 2021, 11(1): 1-6. |
[11] | 王兴文,林永茂,缪尉杰. 川南深层页岩气体积压裂工艺技术 [J]. 油气藏评价与开发, 2021, 11(1): 102-108. |
[12] | 葛忠伟,欧阳嘉穗,王同,周静,郭卫星,靳利超. 永川深层页岩气田储层特征及富集规律研究 [J]. 油气藏评价与开发, 2021, 11(1): 29-37. |
[13] | 钟文俊,熊亮,黎鸿,董晓霞,周静. 测井评价技术在威荣深层页岩气田中的应用 [J]. 油气藏评价与开发, 2021, 11(1): 38-46. |
[14] | 龙章亮,钟敬敏,胡永章,温真桃,李辉,曾贤薇. 地质力学在永川深层页岩气开发中的应用 [J]. 油气藏评价与开发, 2021, 11(1): 72-80. |
[15] | 王浩宇,熊亮,史洪亮,董晓霞,魏力民,简万洪. 威荣深层页岩气田开发水平井测试选段技术研究 [J]. 油气藏评价与开发, 2021, 11(1): 86-94. |
|