油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (5): 730-735.doi: 10.13809/j.cnki.cn32-1825/te.2021.05.010

• 海上油气勘探与开发 • 上一篇    下一篇

基于神经网络的南海东部砂岩油藏采收率预测方法

李伟1(),唐放1,侯博恒1,钱银2,崔传智2(),陆水青山2,吴忠维2   

  1. 1. 中海石油(中国)有限公司深圳分公司,广东 深圳 518067
    2. 中国石油大学(华东)非常规油气开发教育部重点实验室,山东 青岛 266580
  • 收稿日期:2021-04-26 出版日期:2021-10-26 发布日期:2021-10-12
  • 通讯作者: 崔传智 E-mail:liwei1@cnooc.com.cn;ccz2008@126.com
  • 作者简介:李伟(1972—),男,本科,高级工程师,主要从事油气田开发研究工作。地址:广东省深圳市南山区后海滨路(深圳湾段)3168号中海油大厦A座,邮政编码:518067。E-mail: liwei1@cnooc.com.cn
  • 基金资助:
    国家自然科学基金项目“致密油藏多段压裂水平井时空耦合流动模拟及参数优化方法”(51974343);青岛市博士后应用研究项目“致密油藏体积压裂支撑剂分布模拟与参数优化研究”(qdyy20200084)

A method for oil recovery prediction of sandstone reservoirs in the eastern South China Sea based on neural network

LI Wei1(),TANG Fang1,HOU Boheng1,QIAN Yin2,CUI Chuanzhi2(),LU Shuiqingshan2,WU Zhongwei2   

  1. 1. CNOOC Shenzhen Company, Shenzhen, Guangdong 518067, China
    2. MOE Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum, Qingdao, Shandong 266580, China;
  • Received:2021-04-26 Online:2021-10-26 Published:2021-10-12
  • Contact: CUI Chuanzhi E-mail:liwei1@cnooc.com.cn;ccz2008@126.com

摘要:

目前南海东部砂岩油藏采收率预测多采用数值模拟和线性回归等方法,这些方法分别存在耗时长和精度低的缺点。为了快速、准确地预测油藏采收率,选择50个已开发油藏作为数据样本,在利用主成分分析对采收率影响因素进行特征提取的基础上,运用神经网络回归法,建立了适用于南海东部海相砂岩油藏的采收率预测模型。通过与支持向量机回归和线性回归两种方法建立的采收率预测模型的预测结果对比表明,神经网络回归模型预测结果具有较高的预测精度,能够快速评价此类油藏的开发潜力。

关键词: 神经网络, 南海东部, 砂岩油藏, 采收率, 预测模型, 主成分分析

Abstract:

At present, the methods such as numerical simulation and linear regression are mostly used to predict the oil recovery of sandstone reservoirs in the eastern South China Sea, but some of them are time-consuming or with low accuracy. In order to predict the oil recovery quickly and accurately, 50 developed reservoirs are selected as the data samples. Based on the feature extraction of the influencing factors of the principal component analysis on recovery, a recovery prediction model suitable for sandstone reservoirs in the eastern South China Sea is established by the neural network. Compared with that of two methods of support vector machine regression and linear regression, the prediction results of neural network regression model have high prediction accuracy, which can evaluate the development potential of the similar reservoirs quickly.

Key words: neural network, eastern South China Sea, sandstone reservoir, oil recovery, prediction model, principal component analysis

中图分类号: 

  • TE327