[1] |
张东晓, 杨婷云. 页岩气开发综述[J]. 石油学报, 2013, 34(4):792-801.
|
|
ZHANG Dongxiao, YANG Tingyun. An overview of shale gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792-801.
|
[2] |
闫建萍, 张同伟, 李艳芳, 等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5):805-811.
|
|
YAN Jianping, ZHANG Tongwei, LI Yanfang, et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811.
|
[3] |
王瑞, 杨晨曦, 茹瀚昱, 等. 页岩和煤在容量法等温吸附实验中的误差对比[J]. 非常规油气, 2021, 8(3):43-48.
|
|
WANG Rui, YANG Chenxi, RU Hanyu, et al. Comparison of error in methane isotherm adsorption by volumetric method for shale and coal[J]. Unconventional Oil & Gas, 2021, 8(3): 43-48.
|
[4] |
CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
|
[5] |
ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131.
doi: 10.1016/j.orggeochem.2012.03.012
|
[6] |
WANG S, FENG Q H, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development Online, 2015, 42(6): 844-851.
|
[7] |
WANG T Y, TIAN S C, LI G S, et al. Selective adsorption of supercritical carbon dioxide and methane binary mixture in shale kerogen nanopores[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 181-188.
doi: 10.1016/j.jngse.2017.12.002
|
[8] |
AMBROSE R J, CLARKSON C R, YOUNGBLOOD J E, et al. Life-cycle decline curve estimation for tight/shale reservoirs[C]// Paper SPE-140519-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, January, 2011.
|
[9] |
刘冰, 史俊勤, 沈跃, 等. 石墨狭缝中甲烷吸附的分子动力学模拟[J]. 计算物理, 2013, 30(5):692-699.
|
|
LIU Bing, SHI Junqin, SHEN Yue, et al. A molecular dynamics simulation of methane adsorption in graphite slit-pores[J]. Chinese Journal of Computational Physics, 2013, 30(5): 692-699.
|
[10] |
陈磊, 黄鼎斌, 李仲珍, 等. 微狭缝中甲烷吸附特性的分子动力学模拟[J]. 热科学与技术, 2016, 15(2):92-96.
|
|
CHEN Lei, HUANG Dingbin, LI Zhongzhen, et al. Study on methane adsorption in graphite slit-pores by molecular dynamics simulation[J]. Journal of Thermal Science and Technology, 2016, 15(2): 92-96.
|
[11] |
田守嶒, 王天宇, 李根生, 等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12):18-25.
|
|
TIAN Shouceng, WANG Tianyu, LI Gensheng, et al. Molecular simulation of methane adsorption behavior in different shale kerogen types[J]. Natural Gas Industry, 2017, 37(12): 18-25.
|
[12] |
卢双舫, 沈博健, 许晨曦, 等. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J]. 地球科学, 2018, 43(5):1783-1791.
|
|
LU Shuangfang, SHEN Bojian, XU Chenxi, et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J]. Earth Science, 2018, 43(5): 1783-1791.
|
[13] |
唐鑫, 朱炎铭, 郭远臣, 等. 四川盆地龙马溪组页岩储层孔隙及伊利石甲烷吸附特征[J]. 天然气地球科学, 2018, 29(12):1809-1816.
|
|
TANG Xin, ZHU Yanming, GUO Yuanchen, et al. Molecular simulation of methane adsorption within illite minerals in the shale of the Longmaxi Formation based on a grand canonical Monte Carlo method and pore size distribution[J]. Natural Gas Geoscience, 2018, 29(12): 1809-1816.
|
[14] |
XIONG J, XIANGJUN LIU X J, LIANG L X, et al. Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study[J]. Fuel, 2017, 200: 299-315.
doi: 10.1016/j.fuel.2017.03.083
|
[15] |
HAMZA J, MAYTHAM I, KOVSCEK A R. Experimental investigation and Grand Canonical Monte Carlo simulation of gas shale adsorption from the macro to the nano scale[J]. Journal of Natural Gas Science and Engineering, 2017, 48: 119-137.
doi: 10.1016/j.jngse.2016.12.024
|
[16] |
KATTI D R, THAPA K B, KATTI K S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models[J]. Fuel, 2017, 199: 641-652.
doi: 10.1016/j.fuel.2017.03.021
|
[17] |
许晨曦, 薛海涛, 李波宏, 等. 页岩气在矿物孔隙中的微观吸附机理差异性研究[J]. 特种油气藏, 2020, 27(4):79-84.
|
|
XU Chenxi, XUE Haitao, LI Bohong, et al. Microscopic adsorption mechanism difference in the mineral pore of shale gas reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 79-84.
|
[18] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653.
doi: 10.1016/S1876-3804(11)60001-3
|
|
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
doi: 10.1016/S1876-3804(11)60001-3
|
[19] |
UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105.
doi: 10.1021/ef502154k
|
[20] |
马青华, 张学梅, 郝静远, 等. 页岩气临界吸附量的初步研究[J]. 非常规油气, 2020, 7(6):76-80.
|
|
MA Qinghua, ZHANG Xuemei, HAO Jingyuan, et al. Preliminary Study on Critical Adsorption Capacity of Shale Gas[J]. Unconventional Oil & Gas, 2020, 7(6): 76-80.
|
[21] |
GIBBS J W. The collected works of J. Willard Gibbs, Volume I: Thermodynamics[M]. New Haven Yale University Press, 1928.
|
[22] |
熊健, 刘向君, 梁利喜. 甲烷在官能团化石墨中吸附行为的影响因素研究[J]. 中国矿业大学学报, 2017, 46(2):356-364.
|
|
XIONG Jian, LIU Xiangjun, LIANG Lixi. Investigation on the influence factors of the methane adsorption in functionalized graphite[J]. Journal of China University of Mining & Technology, 2017, 46(2): 356-364.
|
[23] |
GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123: 34-51.
doi: 10.1016/j.coal.2013.06.010
|
[24] |
范德赞, 杜建芬, 张玲玲. 页岩气在Ⅱ型干酪根有机质中吸附的分子模拟[J]. 原子与分子物理学报, 2018, 35(4):537-543.
|
|
FAN Dezan, DU Jianfen, ZHANG Lingling. Molecular simulation of shale gas adsorption onto Ⅱ kerogen organic matter[J]. Journal of Atomic and Molecular Physics, 2018, 35(4): 537-543.
|