油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (4): 596-603.doi: 10.13809/j.cnki.cn32-1825/te.2022.04.007
陈跃1(),王丽雅1(),李国富2,张林3,杨甫4,马卓远1,高正1
收稿日期:
2022-04-12
出版日期:
2022-08-26
发布日期:
2022-09-02
通讯作者:
王丽雅
E-mail:cyxust@126.com;1308346025@qq.com
作者简介:
陈跃(1988—),男,博士,副教授,从事非常规天然气地质研究。地址:陕西省西安市雁塔中路58号西安科技大学,邮政编码:710054。E-mail: 基金资助:
CHEN Yue1(),WANG Liya1(),LI Guofu2,ZHANG Lin3,YANG Fu4,MA Zhuoyuan1,GAO Zheng1
Received:
2022-04-12
Online:
2022-08-26
Published:
2022-09-02
Contact:
WANG Liya
E-mail:cyxust@126.com;1308346025@qq.com
摘要:
中国低煤阶煤层气资源丰富,且煤层气作为一种清洁能源,其开发和利用可有效地缓解我国天然气资源短缺问题,但是商业化规模开发稍显不足,亟需系统研究。煤层气高效开发的前提是有利区优选,但目前煤层气开发选区评价均涉及一定的主观人为因素,会间接影响或干扰预测效果。将黄陇煤田彬长矿区大佛寺井田低煤阶作为研究对象,以生产实际数据为基础,采用机器学习中的随机森林算法对该区煤层气开发选区做出预测。结果表明:①Pearson关联系数(PCC)分析表明含气量、灰分、煤层净厚度、构造位置、顶板厚度、渗透率、储层压力和埋深这8个煤层气产出相关参数相互独立,可用于模型建立;②随机森林算法将煤层气开发选区划分为5类不同程度的区域,其中Ⅰ类(极高)和Ⅱ类(高有利)区占整个研究区域的13.88 %,主要分布在井田的中部,西部存在Ⅱ类(高有利区)分布,后续开发部署井位也可着重考虑,而井田的东南部不适于后续部署井位;③由接受者操作特征曲线(ROC)可知,一般成功率曲线与预测率曲线下的面积值(AUC)为0.961,表明随机森林模型预测精度较高,结果可靠。通过机器学习算法对煤层气开发选区进行综合预测,可规避传统算法中的人为主观因素,且具有较高的精度,可为后续非常规油气开发选区提供一定的理论参考依据。
中图分类号:
陈跃,王丽雅,李国富,张林,杨甫,马卓远,高正. 基于随机森林算法的低煤阶煤层气开发选区预测[J]. 油气藏评价与开发, 2022, 12(4): 596-603.
CHEN Yue,WANG Liya,LI Guofu,ZHANG Lin,YANG Fu,MA Zhuoyuan,GAO Zheng. Prediction of favorable areas for low-rank coalbed methane based on Random Forest algorithm[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 596-603.
表1
鄂尔多斯盆地大佛寺井田4号煤层评价指标参数"
井号 | 分类 | 产气量(m3/d) | 含气量(m3/t) | 埋深(m) | 煤厚(m) | 渗透率(10-3 μm2) | 储层压力(MPa) | 灰分(%) | 构造部位 | 顶板厚度(m) |
---|---|---|---|---|---|---|---|---|---|---|
D68 | 高 产 井 | 10 246.09 | 4.3 | 610 | 11.0 | 7.7 | 2.8 | 14.0 | 0.8 | 2.2 |
D02 | 10 181.94 | 2.8 | 590 | 16.8 | 10.0 | 3.3 | 11.0 | 0.8 | 2.1 | |
D05 | 8 316.52 | 3.6 | 589 | 14.0 | 9.2 | 3.1 | 12.0 | 0.7 | 2.0 | |
D124 | 4 205.09 | 8.1 | 615 | 11.8 | 6.6 | 3.2 | 15.5 | 1.0 | 2.1 | |
D85 | 4 025.73 | 1.8 | 535 | 8.3 | 7.3 | 3.8 | 14.9 | 0.7 | 1.2 | |
D09 | 3 998.08 | 6.8 | 465 | 12.6 | 15.0 | 1.2 | 15.2 | 0.7 | 6.0 | |
D143 | 3 633.23 | 8.0 | 490 | 13.6 | 7.8 | 1.4 | 13.9 | 0.7 | 0.7 | |
D04 | 3 236.77 | 3.3 | 500 | 10.3 | 3.8 | 2.9 | 10.5 | 0.8 | 0.7 | |
D133 | 2 590.39 | 8.3 | 510 | 12.2 | 11.0 | 5.5 | 15.9 | 1.0 | 3.0 | |
D01 | 2 032.40 | 3.8 | 505 | 17.6 | 7.8 | 0.8 | 12.0 | 0.8 | 1.2 | |
D134 | 1 961.95 | 8.0 | 490 | 10.2 | 6.8 | 4.3 | 17.0 | 0.7 | 0.6 | |
D131 | 1 876.32 | 10.0 | 435 | 13.9 | 12.3 | 3.6 | 14.4 | 1.0 | 1.8 | |
D45 | 1 696.16 | 2.2 | 435 | 14.3 | 11.8 | 2.4 | 15.2 | 0.7 | 1.8 | |
D148 | 1 629.34 | 7.7 | 500 | 8.3 | 7.4 | 5.5 | 15.8 | 0.7 | 1.4 | |
D06 | 1 339.94 | 3.2 | 540 | 11.8 | 7.3 | 1.3 | 11.9 | 0.7 | 1.4 | |
D03 | 1 248.76 | 2.8 | 570 | 10.2 | 4.8 | 2.5 | 19.0 | 0.8 | 1.5 | |
D128 | 低 产 井 | 1 177.44 | 9.1 | 448 | 10.8 | 12.5 | 4.6 | 15.2 | 1.0 | 3.6 |
D132 | 836.56 | 8.3 | 480 | 11.0 | 18.8 | 5.6 | 15.1 | 1.0 | 6.8 | |
DU53 | 643.54 | 3.5 | 540 | 12.3 | 6.0 | 6.0 | 16.0 | 1.0 | 0.8 | |
D152 | 554.33 | 8.2 | 505 | 8.3 | 7.4 | 6.0 | 15.2 | 0.7 | 1.4 | |
D59 | 460.25 | 8.6 | 585 | 20.3 | 6.5 | 3.3 | 17.0 | 1.0 | 2.6 | |
D73 | 458.52 | 9.3 | 630 | 13.5 | 8.0 | 3.8 | 16.8 | 0.7 | 3.0 | |
D135 | 450.94 | 8.1 | 510 | 12.3 | 8.1 | 4.8 | 16.3 | 0.7 | 1.0 | |
D150 | 434.58 | 7.3 | 510 | 10.3 | 7.9 | 4.6 | 14.5 | 0.7 | 1.4 | |
D105 | 356.06 | 10.0 | 440 | 14.2 | 11.1 | 3.6 | 14.3 | 0.7 | 0.9 | |
D69 | 344.81 | 8.5 | 628 | 14.0 | 7.0 | 3.4 | 16.2 | 0.7 | 2.6 | |
D71 | 340.54 | 8.6 | 600 | 11.0 | 8.1 | 3.7 | 16.2 | 0.7 | 3.0 | |
D122 | 304.95 | 9.3 | 445 | 12.0 | 11.1 | 2.6 | 15.9 | 0.7 | 3.8 | |
D84 | 256.95 | 8.2 | 630 | 14.7 | 7.5 | 4.0 | 17.2 | 0.7 | 2.6 | |
D114 | 244.23 | 6.5 | 565 | 17.8 | 14.0 | 3.0 | 13.0 | 0.7 | 3.6 | |
D86 | 239.53 | 8.1 | 650 | 13.0 | 6.8 | 3.9 | 17.8 | 0.8 | 2.3 | |
D120 | 212.47 | 8.1 | 500 | 12.2 | 11.0 | 2.5 | 15.8 | 1.0 | 3.7 |
表2
开发选区评价因子关联系数"
含气量 | 埋深 | 煤厚 | 渗透率 | 储层压力 | 构造部位 | 灰分 | 顶板厚度 | |
---|---|---|---|---|---|---|---|---|
含气量 | 1.000 | -0.130 | 0.044 | 0.284 | 0.312 | 0.417 | 0.194 | 0.318 |
埋深 | -0.130 | 1.000 | 0.186 | -0.475 | 0.011 | 0.199 | -0.127 | -0.047 |
煤厚 | 0.044 | 0.186 | 1.000 | 0.166 | -0.396 | -0.198 | 0.141 | 0.106 |
渗透率 | 0.284 | -0.475 | 0.166 | 1.000 | 0.021 | -0.122 | 0.218 | 0.768 |
储层压力 | 0.312 | 0.011 | -0.396 | 0.021 | 1.000 | 0.350 | 0.231 | -0.012 |
构造部位 | 0.417 | 0.199 | -0.198 | -0.122 | 0.350 | 1.000 | 0.075 | 0.146 |
灰分 | 0.194 | -0.127 | 0.141 | 0.218 | 0.231 | 0.075 | 1.000 | 0.271 |
顶板厚度 | 0.318 | -0.047 | 0.106 | 0.768 | -0.012 | 0.146 | 0.271 | 1.000 |
[1] | 李勇, 许卫凯, 高计县, 等. “源-储-输导系统”联控煤系气富集成藏机制——以鄂尔多斯盆地东缘为例[J]. 煤炭学报, 2021, 46(8):2440-2453. |
LI Yong, XU Weikai, GAO Jixian, et al. Mechanism of coal measure gas accumulation under integrated control of “source reservoir-transport system”: A case study from east margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(8): 2440-2453. | |
[2] | 李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 2020, 45(4):1406-1418. |
LI Yong, WANG Yanbin, MENG Shangzhi, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 2020, 45(4): 1406-1418. | |
[3] | 陈晓智, 汤达祯, 许浩, 等. 低、中煤阶煤层气地质选区评价体系[J]. 吉林大学学报(地球科学版), 2012, 42(S2):115-120. |
CHEN Xiaozhi, TANG Dazhen, XU Hao, et al. Geological evaluation system of potential coalbed methane exploration and development blocks with Low and Medium coal ranks[J]. Journal of Jilin University( Earth Science Edition), 2012, 42(S2): 115-120. | |
[4] | 张莉娜, 刘欣, 张耀祖. 基于正交试验设计的页岩气藏压裂敏感性分析[J]. 非常规油气, 2021, 8(5):77-86. |
ZHANG Lina, LIU Xin, ZHANG Yaozu. Sensitivity analysis of shale gas reservoir based on orthogonal experimental design[J]. Unconventional Oil & Gas, 2021, 8(5): 77-86. | |
[5] | 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5):34-44. |
HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng and Longmaxi Formation, southwest of Sichuan Basin, China[J]. Unconventional Oil & Gas, 2021, 8(5): 34-44. | |
[6] | 王金, 康永尚, 姜杉钰, 等. 沁水盆地寿阳区块煤层气井产水差异性原因分析及有利区预测[J]. 天然气工业, 2016, 36(8):52-59. |
WANG Jin, KANG Yongshang, JIANG Shanyu, et al. Reasons for water production difference of CBM wells in Shouyang Block, Qinshui Basin, and prediction on favorable areas[J]. Natural Gas Industry, 2016, 36(8): 52-59. | |
[7] |
XU H, TANG D Z, LIU D M, et al. Study on coalbed methane accumulation characteristics and favorable areas in the Binchang area, southwestern Ordos Basin, China[J]. International Journal of Coal Geology, 2012, 95: 1-11.
doi: 10.1016/j.coal.2012.02.001 |
[8] | 姚艳斌, 刘大锰, 汤达祯, 等. 平顶山煤田煤储层物性特征与煤层气有利区预测[J]. 地球科学(中国地质大学学报), 2007, 32(2):285-290. |
YAO Yanbin, LIU Dameng, TANG Dazhen, et al. Coal reservoir physical characteristics and prospective areas for CBM exploitation in Pingdingshan coalfield[J]. Earth Science(Journal of China University of Geoscience), 2007, 32(2): 285-290. | |
[9] |
SHAO L Y, HOU H H, TANG Y, et al. Selection of strategic replacement areas for CBM exploration and development in China[J]. Natural Gas Industry B, 2015, 2(2): 211-221.
doi: 10.1016/j.ngib.2015.07.013 |
[10] | 邵龙义, 王学天, 张家强, 等. 滇东北地区煤层气富集特征及勘探目标优选[J]. 天然气工业, 2018, 38(9):17-27. |
SHAO Longyi, WANG Xuetian, ZHANG Jiaqiang, et al. CBM accumulation characteristics and exploration target selection in northeastern Yunnan, China[J]. Natural Gas Industry, 2018, 38(9): 17-27. | |
[11] | 邵龙义, 文怀军, 李永红, 等. 青海省天峻县木里煤田煤层气有利区块的多层次模糊数学评判[J]. 地质通报, 2011, 30(12):1896-1903. |
SHAO Longyi, WEN Huaijun, LI Yonghong, et al. Assessment of favorable areas for coalbed methane resources exploration in the Muli coalfield of Qin hai Province based on multi-layered fuzzy mathematics[J]. Geological Bulletin of China, 2011, 30(12): 1896-1903. | |
[12] |
FU H, TANG D, XU H, et al. Geological characteristics and CBM exploration potential evaluation: A case study in the middle of the southern Junggar Basin, NW China[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 557-570.
doi: 10.1016/j.jngse.2016.02.024 |
[13] | 刘人和, 刘飞, 周文, 等. 沁水盆地煤岩储层特征及有利区预测[J]. 油气地质与采收率, 2008, 73(4):16-19. |
LIU Renhe, LIU Fei, ZHOU Wen, et al. Characteristics and favorable area prediction of coal reservoirs in Qinshui Basin[J]. Petroleum Geology and Recovery Efficiency, 2008, 73(4): 16-19. | |
[14] | 张小东, 张硕, 许亚坤, 等. 基于模糊数学的豫东煤系气资源勘探有利区预测[J]. 煤炭科学技术, 2018, 46(11):172-181. |
ZHANG Xiaodong, ZHANG Shuo, XU Yakun, et al. Favorable block prediction of coal measure gas resource exploration in eastern Henan area based on fuzzy mathematics[J]. Coal Science and Technology, 2018, 46(11): 172-181. | |
[15] | 王鹏, 李图南. 基于MapGIS的大佛寺井田煤层气资源有利区预测[J]. 煤炭科学技术, 2019, 47(5):193-197. |
WANG Peng, LI Tunan. Prediction on favorable areas of CBM resources based on MapGIS in Dafosi Minefield[J]. Coal Science and Technology, 2019, 47(5): 193-197. | |
[16] |
LIU H, SANG S X, WANG G X, et al. Evaluation of the synergetic gas-enrichment and higher-permeability regions for coalbed methane recovery with a fuzzy model[J]. Energy, 2012, 39: 426-439.
doi: 10.1016/j.energy.2011.12.027 |
[17] | 刘灵童, 王文升, 尹彦君, 等. 灰色关联分析在中阶煤层气有利井区快速优选中的应用[J]. 长江大学学报(自然科学版), 2016, 13(10):17-21. |
LIU Lingtong, WANG Wensheng, YIN Yanjun, et al. Application of grey correlational analysis in fast optimization of favorable well block of medium-rank coalbed methane[J]. Journal of Yangtze University(Natural Science Edition), 2016, 13(10): 17-21. | |
[18] | 白利娜, 曾家瑶, 高为. 基于灰色关联分析的盘关向斜煤层气有利井区优选[J]. 煤炭科学技术, 2019, 47(4):169-173. |
BAI Li'na, ZENG Jiayao, GAO Wei. Optimization of favorable well for CBM based on grey correlation analysis in Panguan Syncline[J]. Coal Science and Technology, 2019, 47(4): 169-173. | |
[19] | 张嘉睿, 夏玉成, 李涛, 等. Entropy-Kmeans方法在煤层气开发前景评价中的应用[J]. 煤矿安全, 2020, 51(8):158-163. |
ZHANG Jiarui, XIA Yucheng, LI Tao, et al. Application of Entropy-Kmeans in evaluation of coalbed methane development prospect[J]. Coal Mine Safety, 2020, 51(8): 158-163. | |
[20] | 罗金辉, 杨永国, 秦勇, 等. 基于组合权重的煤层气有利区块模糊优选[J]. 煤炭学报, 2012, 37(2):242-246. |
LUO Jinhui, YANG Yongguo, QIN Yong, et al. Fuzzy optimization for CBM favorable targets based on combined weights[J]. Journal of China Coal Society, 2012, 37(2): 242-246. | |
[21] | 张吉军. 模糊层次分析法(FAHP)[J]. 模糊系统与数学, 2000(2):80-88. |
ZHANG Jijun. Fuzzy analytical hierarchy process[J]. Fuzzy Systems and Mathematics, 2000(2): 80-88. | |
[22] | 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7):93-100. |
DENG Xue, LI Jiaming, ZENG Haojian, et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in Practice and Knowledge, 2012, 42(7): 93-100. | |
[23] | 常建娥, 蒋太立. 层次分析法确定权重的研究[J]. 武汉理工大学学报(信息与管理工程版), 2007, 134(1):153-156. |
CHANG Jian'e, JIANG Taili. Research on the weight of coefficient through analytic hierarchy process[J]. Journal of Wuhan University of Technology (Information and Management Engineering Edition), 2007, 134(1): 153-156. | |
[24] | 康保平, 姜帆. 四川盆地威远地区下志留统龙马溪组页岩储层有利区评价[J]. 天然气勘探与开发, 2021, 44(3):87-95. |
KANG Baoping, JIANG Fan. Evaluation on favorable shale reservoirs of Lower Silurian Longmaxi Formation, Weiyuan area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(3): 87-95. | |
[25] | 来鹏, 杜世涛, 杨曙光, 等. 博乐盆地石炭系阿克沙克组沉积演化及页岩气有利区预测[J]. 非常规油气, 2020, 7(5):32-40. |
LAI Peng, DU Shitao, YANG Shuguang, et al. Sedimentary evolution of Carboniferous Akshak Formation and prediction of favorable shale gas areas in Bole Basin[J]. Unconventional Oil & Gas, 2020, 7(5): 32-40. | |
[26] | 朱庆忠, 胡秋嘉, 杜海为, 等. 基于随机森林算法的煤层气直井产气量模型[J]. 煤炭学报, 2020, 45(8):2846-2855. |
ZHU Qingzhong, HU Qiujia, DU Haiwei, et al. A gas production model of vertical coalbed methane well based on random forest algorithm[J]. Journal of China Coal Society, 2020, 45(8): 2846-2855. | |
[27] | 蔺亚兵, 宋一民, 蒋同昌, 等. 黄陇煤田永陇矿区煤层气成藏条件及主控因素研究[J]. 煤炭科学技术, 2018, 46(3):168-175. |
LIN Yabing, SONG Yimin, JIANG Tongchang, et al. Study on forming conditions and main controlling factors of CBM reservoirs in Yonglong Mining Area of Huanglong Coalfield[J]. Coal Science and Technology, 2018, 46(3): 168-175. | |
[28] | 高正, 马东民, 陈跃, 等. 含水率对不同宏观煤岩类型甲烷吸附/解吸特征的影响[J]. 煤炭科学技术, 2020, 48(8):97-105. |
GAO Zheng, MA Dongmin, CHEN Yue, et al. Effect of water content on adsorption/desorption of methane of different macroscopic lithotypes[J]. Coal Science and Technology, 2020, 48(8): 97-105. | |
[29] | 马东民, 王传涛, 夏玉成, 等. 大佛寺井田煤层气井压裂参数优化方案[J]. 西安科技大学学报, 2019, 39(2):263-269. |
MA Dongmin, WANG Chuantao, XIA Yucheng, et al. Optimization program of fracturing parameters for coalbed methane wells in Dafosi Minefield[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 263-269. | |
[30] | 彭文利, 薛冽, 马效杰, 等. 准噶尔盆地南缘齐古地区煤层气地质特征[J]. 非常规油气, 2021, 8(1):8-14. |
PENG Wenli, XUE Lie, MA Xiaojie, et al. Geological characteristics of coalbed methane in Qigu area, southern Margin of Junggar Basin[J]. Unconventional Oil & Gas, 2021, 8(1): 8-14. |
[1] | 桑树勋,韩思杰,周效志,刘世奇,王月江. 华东地区深部煤层气资源与勘探开发前景 [J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
[2] | 吴壮坤, 张宏录, 池宇璇, 印中华, 张壮. 新型排采泵在延川南深层煤层气井的改进及应用 [J]. 油气藏评价与开发, 2023, 13(4): 416-423. |
[3] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[4] | 孔祥伟,谢昕,王存武,时贤. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价 [J]. 油气藏评价与开发, 2023, 13(4): 433-440. |
[5] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[6] | 姚红生,肖翠,陈贞龙,郭涛,李鑫. 延川南深部煤层气高效开发调整对策研究 [J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
[7] | 石军太,李文斌,张龙龙,季长江,李国富,张遂安. 压裂过程数据对原始煤储层压力反演方法研究 [J]. 油气藏评价与开发, 2022, 12(4): 564-571. |
[8] | 朱苏阳,孟尚志,彭小龙,李相臣,张千贵,张斯. 煤岩润湿性对煤层气赋存的影响机理 [J]. 油气藏评价与开发, 2022, 12(4): 580-588. |
[9] | 张斯,彭小龙. 欠饱和煤层气藏临界解吸压力计算方法 [J]. 油气藏评价与开发, 2022, 12(4): 589-595. |
[10] | 杨兆中,袁健峰,朱静怡,李小刚,李扬,王浩. 煤层气注热增产研究进展 [J]. 油气藏评价与开发, 2022, 12(4): 617-625. |
[11] | 张龙,王一兵,鲜保安,张亚飞,谭章龙,哈尔恒·吐尔松,孙昊,王冠,张锦涛. 新疆阜康矿区煤层气双管柱筛管完井机理与适用性研究 [J]. 油气藏评价与开发, 2022, 12(4): 633-642. |
[12] | 张庆,何封,何佑伟. 基于机器学习的页岩气井井间干扰评价及预测 [J]. 油气藏评价与开发, 2022, 12(3): 487-495. |
[13] | 李鑫. 构造对深层煤层气井产能的控制研究 [J]. 油气藏评价与开发, 2021, 11(4): 643-651. |
[14] | 姚红生,陈贞龙,郭涛,李鑫,肖翠,解飞. 延川南深部煤层气地质工程一体化压裂增产实践 [J]. 油气藏评价与开发, 2021, 11(3): 291-296. |
[15] | 蒋永平,杨松. 鄂尔多斯盆地东缘延川南区块煤层气井排水采气新工艺 [J]. 油气藏评价与开发, 2021, 11(3): 384-389. |
|