[1] |
李英杰, 钟立博, 左建平. 页岩Ⅰ型裂纹遇层理起裂扩展准则研究[J]. 中国矿业大学学报, 2020, 49(3):488-498.
|
|
LI Yingjie, ZHONG Libo, ZUO Jianping. Crack initiation and propagation criteria of mode I crack encountering bedding plane for shale[J]. Journal of China University of Mining& Technology, 2020, 49(3): 488-498.
|
[2] |
张丰收, 吴建发, 黄浩勇, 等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业, 2021, 41(1):125-135.
|
|
ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125-135.
|
[3] |
郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1):102-117.
|
|
GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117.
|
[4] |
刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018, 39(3):320-326.
doi: 10.7623/syxb201803007
|
|
LIU Shun, HE Heng, ZHAO Qianyun, et al. Staggered extension laws of hydraulic fracture and natural fracture[J]. Acta Petrolei Sinica, 2018, 39(1): 320-326.
doi: 10.7623/syxb201803007
|
[5] |
ZHOU J, CHEN M, JIN Y, et al. Analysis of fracture propagation behaviour and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
doi: 10.1016/j.ijrmms.2008.01.001
|
[6] |
范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版), 2014, 38(4):117-123.
|
|
FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum, 2014, 38(4): 117-123.
|
[7] |
考佳玮, 金衍, 付卫能, 等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6):37-44.
|
|
KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 37-44.
|
[8] |
侯冰, 程万, 陈勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12):81-86.
|
|
HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81-86.
|
[9] |
曾义金, 周俊, 王海涛, 等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报, 2019, 38(9):1758-1766.
|
|
ZENG Yijin, ZHOU Jun, WANG Haitao, et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1758-1766.
|
[10] |
BEHNIA M, GOSHTASBI K, MARJI M F, et al. Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media[J]. Acta Geotechnica, 2015, 10(4): 533-546.
doi: 10.1007/s11440-014-0332-1
|
[11] |
WU K, OLSON J E. Numerical investigation of complex hydraulic-fracture development in naturally fractured reservoirs[J]. SPE Production & Operations, 2016, 31(4): 38-52.
|
[12] |
TANG J Z, WU K, LI Y C, et al. Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle[J]. Engineering Fracture Mechanics, 2018, 200: 1-16.
doi: 10.1016/j.engfracmech.2018.07.010
|
[13] |
CHANG X, GUO Y, ZHOU J, et al. Numerical and experimental investigations of the interactions between hydraulic and natural fractures in shale formations[J]. Energies, 2018, 11(10): 2541.
doi: 10.3390/en11102541
|
[14] |
CHEN Z, YANG Z, WANG M. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures[J]. Journal of Petroleum Science & Engineering, 2018, 163: 421-434.
|
[15] |
LIU Z, XU H, ZHAO Z, et al. Modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale[J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1993-2001.
doi: 10.1007/s00603-018-1699-3
|
[16] |
GUO J C, ZHAO X, ZHU H Y, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 180-188.
|
[17] |
CORDERO J A R, SANCHEZ E C M, ROEHL D, et al. Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures[J]. Computers and Geotechnics, 2019, 111: 290-300.
doi: 10.1016/j.compgeo.2019.03.020
|
[18] |
SUO Y, CHEN Z X, YAN H, et al. Using cohesive zone model to simulate the hydraulic fracture interaction with natural fracture in poro-viscoelastic formation[J]. Energies, 2019, 12(7): 1254.
doi: 10.3390/en12071254
|
[19] |
DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
doi: 10.2118/124884-PA
|
[20] |
WANG X L, SHI F, LIU C, et al. Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 309-324.
doi: 10.1016/j.jngse.2017.12.013
|
[21] |
SHI F, WANG X, LIU C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64-90.
doi: 10.1016/j.engfracmech.2017.01.025
|
[22] |
NGUYEN T T, YVONNET J, ZHU Q Z, et al. A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 312: 567-595.
|
[23] |
LIANG X, YVONNET J, GHABEZLOO S. Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media[J]. Engineering Fracture Mechanics, 2017, 186: 158-180.
doi: 10.1016/j.engfracmech.2017.10.005
|
[24] |
MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part Ⅲ. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304(1): 619-655.
doi: 10.1016/j.cma.2015.09.021
|
[25] |
易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(S2):706-716.
|
|
YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(S2): 706-716.
|
[26] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342.
|
[27] |
BOURDIN B, FRANFORT G A, MARIGO J J. The variational approach to fracture[J]. Journal of Elasticity, 2008, 91(1): 5-148.
doi: 10.1007/s10659-007-9107-3
|
[28] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311.
doi: 10.1002/nme.2861
|
[29] |
ZHOU S W, RABCZUK T, ZHUANG X Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies[J]. Advances in Engineering Software, 2018, 122: 31-49.
doi: 10.1016/j.advengsoft.2018.03.012
|
[30] |
ZHOU S W, ZHUANG X Y, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240(5): 189-203.
doi: 10.1016/j.enggeo.2018.04.008
|
[31] |
易良平. 致密砂岩储层水力压裂裂缝延伸关键理论问题研究[D]. 成都: 西南石油大学, 2020.
|
|
YI Liangping. Study on key theoretical problems of hydraulic fracture extension in the tight sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2020.
|
[32] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
doi: 10.1063/1.1712886
|
[33] |
EMDADI A, FAHRENHOLTZ W G, HILMAS G E, et al. A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials[J]. Engineering Fracture Mechanics, 2018, 200: 339-354.
doi: 10.1016/j.engfracmech.2018.07.038
|